

Installationsprüfgerät

BENNING IT 130

Bedienungsanleitung

Hersteller:

Benning Elektrotechnik und Elektronik GmbH & Co. KG Münsterstraße 135 - 137 D - 46397 Bocholt Phone: +49 (0) 2871 - 93 - 0 • Fax: +49 (0) 2871 - 93 - 429 www.benning.de • duspol@benning.de

Dieses Symbol auf Ihrem Gerät stellt sicher, dass das Gerät die Anforderungen der EU (Europäische Union) hinsichtlich der Sicherheit und elektromagnetischen Verträglichkeit von Geräten erfüllt

© 2014 BENNING

Dieses Dokument darf ohne ausdrückliche schriftliche Genehmigung von BENNING weder vervielfältigt noch in irgendeiner anderen Form genutzt werden.

IDNR. 20 752 248

TN: 10105456.01

Inhaltsverzeichnis

1	Vorwort	6
2	Sicherheits- und Bedienhinweise	7
	 2.1 Warnhinweise 2.2 Batterien/Akkus und Ladegerät 2.3 Normen 	7 .11 .13
3	Gerätebeschreibung	.14
	 3.1 Vorderseite	14 15 16 17 18 19 19 20
4	Gerätebedienung	.21
	 Anzeigen und Warntöne	21 21 22 22 22 23 24 25 25 26 27 28 29 29
	4.4.9 Einstellungen der Stromzangen	.30
5	Messungen	.32
	 5.1 TRMS Spannung, Frequenz und Phasenfolge 5.2 Isolationswiderstand	32 34 36 36 37 .38 .40 .41 .42
	5.4.3 Auslösestrom (RCD I) 5.4.4 Automatikprüfung	.42 .43

	5.5 5.6 5.6.2 5.7 5.8 5.9 5.10 5.11	Schleifenimpedanz und unbeeinflusster Kurzschlussstrom	.46 .48 .49 .50 .52 .54 .56 .57
6	Mes	swertverwaltung	.61
	6.1 6.2 6.3 6.4 6.4.2 6.4.2 6.4.3 6.5 6.5.1 6.5.1	Speicherstruktur Speichern von Messergebnissen Abrufen von Messergebnissen Löschen von Messergebnissen Löschen des gesamten Messwertspeichers Löschen aller Messungen pro Speicherplatz und Unterspeicherplätze Löschen einer einzelnen Messung Umbenennen der Anlagenstrukturfelder Umbenennen der Anlagenstrukturfelder über die PC-Software Umbenennen der Anlagenstrukturfelder über Barcodescanner	.61 .63 .64 .65 .65 .65 .66 .67 .67
	6.6	USB- und RS 232-Schnittstelle	.68
7	War	tung	.69
	7.1 7.2 7.3 7.4	Ersetzen der Sicherungen Reinigung Periodische Kalibrierung Service	.69 .69 .69 .70
8	Tecl	nnische Daten	.71
	8.1	Isolationswiderstand	71
	8.2 8.2.1 8.2.2 8.3	Niederohmwiderstand/Durchgangsprüfung Niederohmwiderstand R LOW 2 Durchgangsprüfung Fehlerstromschutzeinrichtung FI/RCD	.72 .72 .72 .72 .72
	8.3. 8.3.2 8.3.3	Aligemeine Daten 2 Berührungsspannung (Uc) 3 Auslösezeit (RCD t)	.72 .73 .73
	8.3.4 8.4	Schleifenimpedanz und unbeeinflusster Fehlerstrom	.74 .75
	8.4.1 8.4.2	Funktion Zs (Systeme ohne FI/RCD)	.75
	8.5	Leitungsimpedanz und unbeeinflusster Kurzschlussstrom/ Spannungsfall	.76
	8.6	Erdungswiderstand	.77
	8.7 871	TRMS Spannung, Frequenz und Phasenfolge	.// 77
	8.7.2	2 Spannung des Anschlussmonitores	.77
	8.7.3	3 Frequenz	.77
	8.7.4	Phasenfolge (Drehfeld)	.77
	8.8 8.0	I KIVIS Strom (AC/DC) uber Stromzangenadapter	.78
	8.10	Beleuchtungsstärke	.79
	8.11	Allgemeine Daten	.80

Anhang A	4	Sicherungstabelle – Unbeeinflusster Kurzschlussstrom	81
Anhang I	В	Standard und optionales Zubehör pro Messfunktion	84
Anhang (C	Commander-Prüfspitze, Commander-Prüfstecker	85
C.1		Sicherheitswarnungen	85
C.2	Batt	erien	85
C.3	Bes	chreibung der Commander	86
C.4	LED	-Anzeigen der Commander	87

1 Vorwort

BENNING beglückwünscht Sie zum Kauf des Installationsprüfgerätes BENNING IT 130 und seines Zubehöres. Das Installationsprüfgerät BENNING IT 130 ist ein multifunktionales Prüfgerät zur Prüfung elektrischer Anlagen gemäß DIN VDE 0100-600 (IEC 60364-6) und DIN VDE 0105-100 (EN 50110).

Folgende Messungen und Prüfungen können durchgeführt werden:

- **TRUE RMS Spannung, Frequenz und Drehfeld (Phasenfolge)**
- Niederohmwiderstand, Durchgangsprüfung
- □ Isolationswiderstand
- Fehlerstromschutzeinrichtung (FI/RCD)
- Schleifenimpedanz ohne Auslösung des FI/RCD
- Leitungsimpedanz und Spannungsfall
- TRUE RMS Strom über optionale Stromzangenadapter
- Erdungswiderstand über optionales Erdungsset
- Beleuchtungsstärke über optionales Luxmeter
- □ Erstfehler-Leckstrom im IT Netz

Das grafische Display mit Hintergrundbeleuchtung ermöglicht ein einfaches Ablesen der Messergebnisse, Anzeigen, Messparameter und Meldungen. Zwei Gut/Schlecht-Anzeigen (rote/ grüne LED's) befinden sich seitlich neben dem LC-Display.

Das BENNING IT 130 ist mit allem notwendigen Zubehör für eine komfortable Prüfung ausgestattet. Es wird gemeinsam mit dem gesamten Zubehör in einer gepolsterten Tragetasche aufbewahrt.

2 Sicherheits- und Bedienhinweise

In der Bedienungsanleitung und auf dem Prüfgerät werden folgende Symbole verwendet:

Achtung, Gefahr, Bedienungsanleitung beachten!

] Schutzklasse II

Schutzklasse II

Erde (Spannung gegen Erde)

2.1 Warnhinweise

Um ein hohes Maß an Bediensicherheit während der Prüfungen und Messungen zu erreichen und um Schäden an dem BENNING IT 130 zu vermeiden, müssen folgende allgemeine Warnhinweise beachtet werden.

Warnhinweise - Allgemeine Informationen:

- Wird das Pr
 üfger
 ät nicht wie in dieser Bedienungsanleitung beschrieben eingesetzt, so kann der durch das Pr
 üfger
 ät bereitgestellte Schutz beeintr
 ächtigt werden!
- Lesen Sie die Bedienungsanleitung aufmerksam durch, da die Benutzung des Pr
 üfger
 ätes anderenfalls Gefahren f
 ür Bediener, Pr
 üfger
 ät oder Pr
 üfobjekt darstellen k
 önnte!
- □ Das Prüfgerät bzw. das zugehörige Zubehör niemals verwenden, wenn es eine sichtbare Beschädigung aufweist!
- Beachten Sie alle allgemeinen Sicherheitsvorschriften, um das Risiko eines elektrischen Schlages beim Umgang mit lebensgefährlichen Spannungen zu vermeiden!
- Falls eine Sicherung durchgebrannt ist, gehen Sie nach den Anweisungen in dieser Bedienungsanleitung vor! Verwenden Sie ausschließlich Sicherungen, die den Spezifikationen entsprechen!
- Servicearbeiten, Reparaturen und Einstellungen des Pr
 üfger
 ätes und der Zubeh
 örteile d
 ürfen nur von autorisiertem Fachpersonal ausgef
 ührt werden!
- Verwenden Sie nur standardmäßiges oder optionales BENNING-Zubehör, das Sie von Ihrem Händler erhalten haben!

 Beachten Sie, dass die Messkategorie einiger Zubehörteile geringer als die des Prüfgerätes ist. Prüfspitzen und Commander-Prüfspitzen verfügen über abnehmbare Aufsteckkappen. Wenn diese entfernt werden, reduziert sich die Messkategorie auf CAT II. Prüfen Sie die Markierungen der Zubehörteile! ohne Aufsteckkappe, 18-mm-Spitze: CAT II 1000 V gegen Erde

mit Aufsteckkappe, 4-mm-Spitze:

CAT II 1000 V gegen Erde CAT II 1000 V/CAT III 600 V/CAT IV 300 V gegen Erde

- Das Prüfgerät wird mit wiederaufladbaren NiMH-Akkus geliefert. Die Akkus dürfen nur wie auf dem Schild am Batteriefachdeckel oder wie in dieser Bedienungsanleitung angegeben und nur durch Akkus desselben Typs ausgetauscht werden. Verwenden Sie keine Standard-Alkali-Batterien, während das Ladegerät angeschlossen ist, da diese sonst explodieren können!
- Im Inneren des Gerätes liegen gefährliche Spannungen an. Trennen Sie alle Prüfleitungen, entfernen Sie das Ladegerät und schalten Sie das Prüfgerät aus, bevor Sie die Abdeckung des Batterie-/Sicherungsfachs öffnen.
- Schließen Sie keine Spannungsquelle am C1-Eingang an. Er darf nur f
 ür den Anschluss der Stromzangenadapter verwendet werden. Die maximale Eingangsspannung betr
 ägt 3 V!
- Alle üblichen Sicherheitsbestimmungen müssen beachtet werden, um einen elektrischen Schlag bei Arbeiten an elektrischen Anlagen zu vermeiden!

Warnhinweise im Zusammenhang mit den Messungen:

Isolationswiderstand

- Die Messung des Isolationswiderstandes darf nur an spannungsfreien Prüfobjekten durchgeführt werden!
- Berühren Sie das Prüfobjekt keinesfalls während der Messung, bevor es nicht vollständig entladen ist! Es besteht Gefahr vor elektrischen Schlägen!
- Wenn an kapazitiven Prüfobjekten eine Isolationswiderstandsmessung durchgeführt

wird, erfolgt die Entladung unter Umständen zeitverzögert! Die Warnmeldung und die aktuelle Spannung werden während der Entladung angezeigt, bis die Spannung unter 30 V fällt.

Schließen Sie keinen Messeingang an eine externe Spannung größer als 550 V (AC oder DC) an, um das Prüfgerät nicht zu beschädigen!

Niederohmmessung/Durchgangsprüfung

- Niederohmmessungen/Durchgangsprüfungen dürfen nur an spannungsfreien Prüfobjekten durchgeführt werden!

Prüfung des PE-Anschlusses

Wenn am PE-Anschluss eine Phasenspannung erfasst wird, sofort alle Messungen stoppen. Stellen Sie sicher, dass der Fehler in der Anlage behoben wird, bevor Sie mit den Messungen fortfahren!

Anmerkungen im Zusammenhang mit den Messungen:

Allgemeines

- Die Anzeige bedeutet, dass die gewählte Messung aufgrund von irregulären Bedingungen an den Eingangsklemmen nicht durchgeführt werden kann.
- Messungen des Isolationswiderstandes, Niederohmwiderstandes, Durchgangs und des Erdungswiderstandes können nur im spannungsfreien Zustand durchgeführt werden.
- Die GUT/SCHLECHT-Anzeige wird aktiviert, wenn ein Grenzwert eingestellt wurde. Zur Bewertung der Messergebnisse sind geeignete Grenzwerte zu wählen.
- Wenn nur zwei der drei Pr
 üfleitungen an die zu pr
 üfende elektrische Anlage angeschlossen werden, ist nur der Spannungswert zwischen diesen beiden Pr
 üfleitungen g
 ültig.

Isolationswiderstand

- Die 3-Leiter-Prüfleitung, das Prüfkabel mit Schutzkontaktstecker und die Commander-Prüfspitze können zur Messung des Isolationswiderstandes verwendet werden.
- Wenn an den Pr
 üfklemmen eine Spannung von
 über 30 V (AC oder DC) gemessen wird, kann die Messung des Isolierwiderstandes nicht ausgef
 ührt werden.
- Das Prüfgerät entlädt Prüfobjekte automatisch nach Abschluss der Messung.
- Durch ein Doppelklick auf die Taste TEST wird eine kontinuierliche (fortlaufende) Messung durchgeführt.

Niederohmmessung/Durchgangsprüfung

- Wenn an den Pr
 üfklemmen eine Spannung von
 über 10 V (AC oder DC) gemessen wird, kann die Niederohmmessung/Durchgangspr
 üfung nicht ausgef
 ührt werden.
- Bevor eine Niederohmmessung/Durchgangsprüfung durchgeführt wird, kompensieren Sie falls nötig den Prüfleitungswiderstand.

Erdungswiderstand

- Wenn an den Pr
 üfklemmen eine Spannung von
 über 30 V (AC oder DC) gemessen wird, kann die Messung des Erdungswiderstandes nicht ausgef
 ührt werden.
- □ Wenn an den Prüfklemmen H und E oder S eine Störspannung von über 5 V festgestellt wird, wird das Warnsymbol "小" angezeigt, was darauf hinweist, dass das Messergebnis möglicherweise beeinflusst wurde!

Fehlerstromschutzeinrichtung (FI/RCD)

- Die Parameter, die f
 ür eine Messfunktion eingestellt wurden, werden auch f
 ür andere FI/RCD-Messfunktionen
 übernommen!
- Die Messung der Berührungsspannung sorgt üblicherweise nicht für das Auslösen der Fehlerstrom-Schutzeinrichtung (FI/RCD). Jedoch könnte die Auslösegrenze infolge von Leckströmen über den PE-Schutzleiter oder über kapazitive Verbindungen zwischen den Leitern L und PE überschritten werden.
- Die Messung der Schleifenimpedanz Zsrcd benötigt im Vergleich zur Schleifenimpedanz RL (Unterergebnis der Berührungsspannung) mehr Zeit, bietet jedoch eine deutlich höhere Genauigkeit.
- Die Auslösezeit- und Auslösestrommessung wird nur durchgeführt, wenn die Berührungsspannung bei Nenndifferenzstrom geringer als der eingestellte Grenzwert der Berührungsspannung ist.
- Die automatische Prüffolge (FI/RCD AUTO-Funktion) wird angehalten, wenn die Auslösezeit außerhalb des zulässigen Wertes liegt.

Schleifenimpedanz

- Die angegebene Genauigkeit der gepr
 üften Parameter gilt nur, wenn die Netzspannung w
 ährend der Messung stabil ist.
- Die Messung der Schleifenimpedanz (Zs) löst Fehlerstrom-Schutzeinrichtungen aus.
- Die Messung der Schleifenimpedanz (Zsrcd) löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.

Leitungsimpedanz/Spannungsfall

- Bei der Messung der Leitungsimpedanz Phase gegen Phase Z_I(L-L) mit miteinander kontaktierten Pr
 üfleitungen PE und N wird eine Warnung vor gef
 ährlicher PE-Spannung ausgegeben. Die Messung wird dennoch ausgef
 ührt.
- Die angegebene Genauigkeit der geprüften Parameter gilt nur, wenn die Netzspannung während der Messung stabil ist.
- Die Prüfanschlüsse L und N werden je nach erfasster Anschlussspannung automatisch vertauscht.

Beleuchtungsstärke

- Schatten und ungleichmäßiger Lichteinfall beeinflussen das Messergebnis!
- Künstliche Lichtquellen erreichen erst nach einiger Zeit ihre volle Leistungsstärke (siehe technische Daten der Lichtquellen) und sollten daher solange eingeschaltet sein, bis sie diese Leistung erreichen, bevor die Messungen durchgeführt werden.

Prüfung des PE-Schutzleiteranschlusses

- □ Der PE-Anschluss kann nur in den Schalterpositionen FI/RCD, Z_S(L-PE) und Z_I(L-N/L) geprüft werden!
- Für eine korrekte Messung des PE-Anschlusses muss die Taste TEST einige Sekunden lang berührt werden.
- □ Achten Sie darauf, dass Sie nicht auf einem isolierten Boden stehen, da das Prüfergebnis sonst fehlerhaft sein kann!

2.2 Batterien/Akkus und Ladegerät

Das Gerät kann mit sechs Alkali-Batterien (Typ AA) oder mit wiederaufladbaren NiMH-Batterien (Akkus) betrieben werden. Die angegebene Betriebszeit bezieht sich auf Akkus mit einer Nennleistung von 2100 mAh. Der Ladezustand der Batterien wird permanent im unteren rechten Teil des LC-Displays angezeigt. Wenn die Batteriespannung zu schwach ist, wird dies wie in der Abbildung 2.1 angezeigt. Die Anzeige erscheint einige Sekunden bevor sich das Gerät ausschaltet.

Abbildung 2.1: Anzeige für entladene Batterien

Die Ladung der wiederaufladbaren NiMH-Akkus erfolgt automatisch sobald das Ladegerät mit der Ladebuchse des Prüfgerätes verbunden wird. Die Polarität der Ladebuchse wird in Abbildung 2.2 angezeigt. Eine integrierte Schutzschaltung steuert den Ladevorgang und stellt eine optimale Batterielebensdauer sicher.

> -__(•_+ Abbildung 2.2: Polarität der Ladebuchse

Symbol:

Anzeige des Akkuladevorgangs

Abbildung 2.3: Ladung in Betrieb

Allgemeine Warnhinweise:

- U Wenn das Prüfgerät an eine Anlage angeschlossen ist, kann im Batteriefach eine lebensgefährliche Spannung anliegen! Beim Austauschen der Batterien/Akkus bzw. bevor die Abdeckung des Batterie-/Sicherungsfachs geöffnet wird, sind alle Prüfleitungen/Zubehörteile vom Prüfgerät zu trennen und das Prüfgerät auszuschalten.
- Es ist sicherzustellen, dass die Batterien/Akkus korrekt eingesetzt werden, da das Prüfgerät sonst nicht betrieben werden kann und sich die Akkus entladen.
- □ Keinesfalls Alkali-Batterien aufladen!
- Verwenden Sie ausschließlich das im Lieferumfang befindliche Ladegerät!

Hinweise:

- Das Ladegerät im Prüfgerät ist ein Zellenpack-Ladegerät. Das bedeutet, die Akkus werden beim Laden in Reihe geschaltet. Die Akkus müssen daher äquivalent sein (gleiche Ladung, gleicher Zustand, gleicher Typ und gleiches Alter).
- Falls das Prüfgerät über einen längeren Zeitraum nicht verwendet wird, sind alle Akkus aus dem Batteriefach zu entnehmen.
- Es dürfen nur Alkali-Batterien bzw. wiederaufladbare NiMH-Batterien der Größe AA verwendet werden. Eine Verwendung von Akkus mit einer Leistung von mindestens 2100 mAh wird empfohlen.
- U Während des Ladevorgangs von Akkus, die über einen längeren Zeitraum nicht verwendet wurden (länger als 6 Monate), können unvorhersehbare chemische

Vorgänge auftreten. In diesem Fall wird empfohlen den Lade-/Entladezyklus mindestens 2-4 Mal zu wiederholen.

- Falls nach mehrmaligem Laden/Entladen keine Verbesserung aufgetreten ist, sollte jeder Akku einzeln geprüft werden (Vergleich der Akkuspannungen, Prüfung in einem Zellenladegerät etc.). Höchstwahrscheinlich haben nur einige der Akkus an Leistung eingebüßt. Wenn ein Akku sich von den anderen unterscheidet, kann dies zu fehlerhafter Funktion des gesamten Akkublocks führen!
- Die oben beschriebenen Effekte dürfen nicht mit der normalen Reduzierung der Batteriekapazität über die Zeit verwechselt werden. Jede wiederaufladbare Batterie (Akku) verliert durch wiederholte Lade-/Entladezyklen an Batteriekapazität. Diese Informationen werden in den technischen Daten des Batterieherstellers bereitgestellt.

2.3 Normen

Das BENNING IT 130 wird in Übereinstimmung mit folgenden Vorschriften gebaut und geprüft:

Elektromagnetische Verträglichkeit (EMV)			
EN 61326-1	Elektrische Mess-, Steuer-, Regel- und Laborgeräte		
	– EMV-Anforderungen		
	Klasse B (Handgeräte in kontrollierten EM-Umgebungen)		
Sicherheit (LVD)			
EN 61010-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und		
	Laborgeräte - Teil 1: Allgemeine Anforderungen		
EN 61010-2-030	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und		
	Laborgeräte - Teil 2-030: Besondere Bestimmungen für Prüf- und Mess-		
	stromkreise		
EN 61010-031	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und		
	Laborgeräte - Teil 031: Sicherheitsbestimmungen für handgehaltenes Mess-		
	zubehör zum elektrischen Messen und Prüfen		
EN 61010-2-032	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und		
	Laborgeräte - Teil 2-032: Besonderheiten für handgehaltene und hand-		
	bediente Stromsonden für elektrische Prüfungen und Messungen		
Funktionalität			
EN 61557	Elektrische Sicherheit in Niederspannungsnetzen bis 1000 V _{AC} und		
	1500 V _{DC} – Geräte zum Prüfen, Messen oder Überwachen von Schutz-		
	maßnahmen		
	Teil 1: Allgemeine Anforderungen		
	Teil 2: Isolationswiderstand		
	Teil 3: Schleifenwiderstand		
	Teil 4: Widerstand des Erdungsanschlusses und Potentialausgleichs		
	Teil 5: Erdungswiderstand		
	Teil 6: Fehlerstrom-Schutzeinrichtungen (RCDs) in TT-/TN-/IT-Systemen		
	Teil 7: Drehfeld (Phasenfolge)		
	Teil 10: Kombinierte Prüfgeräte		
DIN 5032	Lichtmessung		
	Teil 7: Klasseneinteilung von Beleuchtungsstärke- und Leuchtdichtemess-		
	geräten		
Referenznormen f	ür elektrische Installationen und Komponenten		
EN 61008	Fehlerstrom-/Differenzstrom-Schutzschalter ohne eingebauten Überstrom-		
	schutz (RCCBs) für Hausinstallationen und für ähnliche Anwendungen		
EN 61009	Fehlerstrom-Schutzschalter mit eingebautem Überstromschutz für		
	Hausinstallationen und für ähnliche Anwendungen		
EN 60364-4-41	Errichten von Niederspannungsanlagen Teil 4-41 Schutzmaßnahmen		
	 Schutz gegen elektrischen Schlag 		
BS 7671	IEE Wiring Regulations (17th edition)		
AS / NZS 3017	Electrical installations – Verification guidelines		

Hinweis zu EN- und IEC-Normen:

Diese Bedienungsanleitung enthält Referenzen zu europäische Normen. Alle Normen der Reihe EN 6XXXX (z. B. EN 61010) entsprechen den jeweiligen IEC-Normen mit derselben Nummer (z. B. IEC 61010). Sie unterscheiden sich lediglich in den, aufgrund der europäischen Harmonisierungsverfahren, modifizierten Teilen.

3 Gerätebeschreibung

3.1 Vorderseite

Abbildung 3.1: Vorderseite

Legende:

1	LCD	Matrix-Display mit 128 x 64 Bildpunkten und Hintergrund- beleuchtung.	
2 3	AUF AB	Ändert ausgewählte Parameter.	
4	TEST	Start der Messung. PE-Berührungselektrode für Schutzleiteranschluss.	
5	ESC	Zurück/Abbruch.	
6	ТАВ	Wählt Parameter in der eingestellten Messfunktion aus.	
7	Hintergrundbeleuchtung Kontrast	Ändert Hintergrundbeleuchtung und Kontrast.	
8	8 ON/OFF Gerät ein- oder ausschalten. Automatische Abschaltung (APO) ohne Tastenbetätig nach 15 Min.		
9	HELP/CAL	Hilfefunktion mit Anschlussbilder (für R LOW und Δ U ca. 2 Sek. drücken) Zur Kalibrierung der Prüfleitungen in der R LOW und DURCHGANGS-Funktion. Startet die Z _{REF} -Messung in der Unterfunktion Δ U Spannungsfall.	
10	Funktionswahlschalter	Drehschalter zur Auswahl der Messfunktionen, AUTO- Schaltstellung und SETTINGS-Einstellungen.	
11	МЕМ	Speichern/Aufrufen von Messergebnissen. Speichert die Einstellungen des Stromzangenadapters.	
12	Grüne/rote LED	üne/rote LED GUT/SCHLECHT-Anzeige der Messergebnisse.	

3.2 Anschlussfeld

Abbildung 3.2: Anschlussfeld

Legende:

1	1 Prüfanschluss Messeingänge/-ausgänge.	
2	Ladebuchse	Zur Ladung der wiederaufladbaren NiMH-Akkus.
3	3 USB-Anschluss USB-Schnittstelle (1.1) für PC-Anschluss.	
4	Schutzabdeckung	
5	C1	Messeingang für optionalen Stromzangenadapter BENNING CC 1/ BENNING CC 2/BENNING CC 3.
6	PS/2-Buchse	Serielle RS 232 Schnittstelle für PC-Anschluss Anschluss für optionalen BENNING Luxmeter Typ B (044111) und Barcodescanner (009371).

- Die höchstzulässige Spannung zwischen den Prüfklemmen und der Erde beträgt 550 V!
- Die höchstzulässige Spannung zwischen den Prüfklemmen beträgt 550 V!
- Die höchstzulässige Spannung am Messeingang C1 beträgt 3 V!
- Die maximal kurzzeitig zulässige Spannung des externen Ladegerätes beträgt 14 V!

3.3 Rückseite

Abbildung 3.3: Rückseite

Legende:

1	Abdeckung des Batterie-/Sicherungsfachs
2	Informationsschild
3	Schrauben für die Abdeckung des Batterie-/Sicherungsfachs

Abbildung 3.4: Batterie- und Sicherungsfach

Legende:

1	Sicherung F1	M 315 mA/250 V
2	Sicherungen F2 und F3	F 4 A/500 V (Abschaltvermögen 50 kA)
3	Seriennummernschild	
4	Akkus/Batterien	Größe AA, Alkali/wiederaufladbar NiMH,
		Anzahl: 6 Stück

Abbildung 3.5: Bodenansicht

Legende:

1	Informationsschild
2	Tragegurtöffnungen
3	Seitenabdeckungen

3.4 Tragen des Prüfgerätes

Mit dem standardmäßigen Lieferumfang kann das Prüfgerät auf verschiedene Arten getragen werden.

Das Prüfgerät hängt mit dem Trageriemen um den Hals des Bedieners.

Das Prüfgerät kann auch in der gepolsterten Tasche getragen und liegend verwendet werden. Die Tragetasche besitzt eine Öffnung zur Durchführung der Prüfleitung.

3.4.1 Befestigung des Trageriemens

Wählen Sie zwischen einer der beiden Methoden:

Abbildung 3.6: Erste Methode

Abbildung 3.7: Alternative Methode

Bitte prüfen Sie regelmäßig die sichere Befestigung.

3.5 Lieferumfang und optionales Zubehör

3.5.1 Standard-Lieferumfang

- 1 x Installationsprüfgerät BENNING IT 130
- 1 x Gepolsterte Tragetasche
- 1 x Commander-Prüfspitze (schaltbar mit TEST-Taste)
- 1 x Prüfkabel mit Schutzkontaktstecker
- 1 x Universelle 3-Leiter-Prüfleitung (schwarz, blau, grün)
- 1 x Prüfspitzensatz (schwarz, blau, grün)
- 1 x Krokodilklemmensatz (schwarz, blau, grün)
- 1 x Trageriemen
- 1 x RS 232-PS/2-Schnittstellenkabel
- 1 x USB-Schnittstellenkabel
- 6 x wiederaufladbare NiMH-Akkus, Größe AA
- 2 x Batterien, Größe AAA
- 1 x Ladegerät
- 1 x CD-Rom mit Protokoll-Software BENNING PC-WIN IT 130, Bedienungsanleitung und Kurzanleitung im PDF-Format
- 1 x Kurzanleitung
- 1 x Kalibrierzertifikat

3.5.2 Optionales Zubehör

Erdungsset Erdungsset, 2 Erdspieße, 3 Prüfleitungen, 2 x L = 20 m, 1 x L = 4,5 m Art. Nr.: 044113	
Stromzangenadapter	
BENNING CC 1, 1 A - 400 A AC Ausgang: 1 mV pro 1 A Art. Nr.: 044037 BENNING CC 2, 0,5 A - 20 A AC Ausgang: 1 mA pro 1 A Art. Nr.: 044110 BENNING CC 3, 0,2 A - 300 A AC/DC	
Ausgang: 1 mV/10 mV pro 1 A Art. Nr.: 044038	
Beleuchtungsstärkesensor BENNING Luxmeter Typ B Art. Nr.: 044111 Zur Planung und Installation von Innen- und Außen- beleuchtungen.	U
Commander-Prüfstecker	
Für Schutzkontaktsteckdose, schaltbar mit TEST- und MEM-Taste, Gut/Schlecht-Anzeige über grüne/rote LED, PE-Berührungselektrode zur Erkennung der Phasenspannung am Schutzleiteranschluss PE. Art. Nr.: 044149	
CEE-Messadapter	
16 A, 5-polig, zur Messung von Spannung und Phasenfolge (Drehfeld) an 16 A CEE-Steckdosen. Art. Nr.: 044148	
40 m Messleitung	
40 m Messleitung mit Aufwickler und Handschlaufe, zur Messung von Schutzleiterverbindungen. Art. Nr.: 044039	
Barcodescanner	
Barcodescanner mit PS/2-Schnittstelle zur Identifizierung der Messstelle und Umbenennung des Speicherplatzes. Art. Nr.: 009371	

4 Gerätebedienung

4.1 Anzeigen und Warntöne

4.1.1 Anschlussmonitor

Der Anschlussmonitor zeigt die anliegenden Spannungen an den Prüfklemmen sowie Informationen über die aktiven Prüfklemmen im Wechselstromnetz an.

L PE N €231 € 0 € 231	Die anliegende Spannung wird zusammen mit der Prüfklemmendarstellung angezeigt. Alle drei Prüfklemmen L, N und PE werden für die ausgewählte Messung verwendet.
	Die anliegende Spannung wird zusammen mit der Prüfklemmendarstellung angezeigt. Die Prüfanschlüsse L und N werden für die ausgewählte Messung verwendet.
L PE N 230 0 0	Die Prüfklemmen L und PE sind aktive Prüfklemmen. Die N-Prüfklemme sollte ebenso angeschlossen werden, um eine korrekte Eingangsspannung aufzuweisen.
	Die anliegende Polarität der Prüfspannung (R LOW, R ISO) wird an den Ausgangsklemmen L und N angezeigt.

4.1.2 Batterieanzeige

Die Batterieanzeige zeigt den aktuellen Ladezustand des Akkus und den Anschluss eines externen Ladegerätes an.

	Batteriekapazitätsanzeige.
Ū	Ladezustand gering. Der Ladezustand ist zu gering, um korrekte Messergebnisse zu garantieren. Ersetzen Sie die Batterien oder laden Sie die Akkus auf.
1 Î	Ladung läuft (bei angeschlossenem Ladegerät).

4.1.3 Warnhinweise und Meldungen

Folgende Warnhinweise und Meldungen werden angezeigt:

4	Warnung! An den Prüfklemmen liegt eine hohe Spannung an.
4	Warnung! Gefährliche Spannung am PE-Anschluss! Beenden Sie umgehend den Messvorgang und beheben Sie den Fehler/das Anschlussproblem, bevor Sie den Vorgang fortsetzen!
	Die Bedingungen an den Eingangsklemmen ermöglichen den Start einer Messung. Beachten Sie weitere Warnungen und Meldungen!
X	Die Bedingungen an den Eingangsklemmen ermöglichen keinen Start der Messung. Beachten Sie weitere Warnungen und Meldungen!
	Die Messung läuft. Beachten Sie angezeigte Warnungen!
	Das Prüfgerät ist überhitzt. Die Messungen werden so lange ausgesetzt, bis die interne Temperatur unter den zulässigen Grenzwert gesunken ist.

8	Ergebnisse können gespeichert werden.
	Während der Messung wurde eine hohe Störspannung festgestellt. Die Messergebnisse können verfälscht sein.
Ф	L und N wurden getauscht.
	FI/RCD während der Messung ausgelöst (in FI/RCD-Funktionen)
	Tragbarer FI/PRCD ausgewählt (nur für Dokumentationszwecke).
CAL ×	Der Widerstand der Prüfleitungen für die Niederohmmessung/ Durchgangs- prüfung ist nicht kompensiert.
CAL V	Der Widerstand der Prüfleitungen für die Niederohmmessung/ Durchgangs- prüfung wurde kompensiert.
٢	Hoher Erdungswiderstand der Messsonden. Die Messergebnisse können verfälscht sein.
< I	Zu geringer Strom für die spezifizierte Genauigkeit. Die Messergebnisse können verfälscht sein. Prüfen Sie die Einstellung des Stromzangenadapters, ob die Empfindlichkeit des Stromzangenadapters erhöht werden kann.
<u>[</u> []P	Das Messsignal liegt außerhalb des Messbereichs. Die Messergebnisse können verfälscht sein.
SF	Einfacher Fehler im IT-Netz.
Ē	Sicherung F1 ist defekt.

4.1.4 Bewertungsfeld

\checkmark	Messergebnis innerhalb der voreingestellten Grenzwerte (grüne LED).
X	Messergebnis außerhalb der voreingestellten Grenzwerte (rote LED).
Ó	Messung wurde abgebrochen. Beachten Sie die angezeigten Warnhinweise und Meldungen.

4.1.5 Warntöne

4.1.6 Hilfe-Menü (HELP-Taste)

HELP	Öffnet das Hilfe-Menü.

Für alle Messfunktionen ist ein Hilfe-Menü verfügbar. Das Hilfe-Menü enthält graphische Anschlussbilder, wie das Prüfgerät an die elektrische Anlage anzuschließen ist. Nach Auswahl der gewünschten Messfunktion kann über die HELP-Taste das entsprechende Hilfe-Menü aufgerufen werden.

Tasten im Hilfe-Menü

AUF/AB	Wählt das nächste/vorherige Anschlussbild.
ESC/HELP/ Funktionswahlschalter	Hilfe-Menü verlassen.

Abbildung 4.1: Anschlussbilder des Hilfe-Menüs

4.1.7 Hintergrundbeleuchtung und Kontrast

Mit der Taste für Hintergrundbeleuchtung und Kontrast können folgende Einstellungen vorgenommen werden:

Kurze Betätigung	Schaltet die Hintergrundbeleuchtung für ca. 10 Sek. ein.
1 s lang gedrückt halten	Schaltet die Hintergrundbeleuchtung dauerhaft ein, bis das Gerät ausgeschaltet oder die Taste erneut gedrückt wird.
2 s lang gedrückt halten	Ermöglicht die Einstellung des LCD-Kontrasts.

Abbildung 4.2: LCD-Kontrasteinstellung

Tasten zur Kontrasteinstellung

AUF	Kontrast erhöhen.
AB	Kontrast verringern.
TEST	Eingestellten Kontrast übernehmen.
ESC	Einstellungen ohne Änderungen beenden.

4.2 Funktionswahlschalter

Der Funktionswahlschalter dient der Auswahl der

- D Prüf- und Messfunktionen
- AUTO-Schaltstellung
- □ SETTINGS-Einstellungen

Tasten-Funktion nach Auswahl der Prüf-/Messfunktion

AUF/AB	Wählt die Unterfunktion der eingestellten Prüf-/Messfunktion aus (nur für R LOW, ZI, Zs, FI/RCD).
ТАВ	Auswahl der Parameter und Grenzwerte.
TEST	Start der Messung.
MEM	Speichern/Aufrufen der Messergebnisse.
ESC	Zurück/Abbruch.

Tasten-Funktion im Feld **Parameter**

AUF/AB	Ändert den ausgewählten Parameter.
ТАВ	Wählt den nächsten Parameter aus.
МЕМ	Speichern/Aufrufen der Messergebnisse.

Parameter und Grenzwerte zur Bewertung von Messergebnissen

Parameter, Grenzwert	OHNE	Keine Parameter/Grenzwerte, Anzeige:
	EIN	Messergebnisse – werden anhand der eingestellten Parameter und
		Grenzwert mit GUT/SCHLECHT bewertet.

Im Kapitel *5. Messungen* sind weitere Informationen zur Durchführung der Prüf-/ Messfunktionen des Prüfgerätes aufgeführt.

4.3 AUTO-Schaltstellung

Stellen Sie den Funktionswahlschalter auf die Schaltstellung **AUTO**, um die Prüf-/Messfunktionen über die Commander-Prüfspitze oder den optionalen Commander-Prüfstecker für Schutzkontaktsteckdose (044149) auszuwählen.

Die Auswahl der Prüf-/Messfunktionen erfolgt über die Tasten der Commander. Eine ausführliche Beschreibung der Commander-Prüfspitze und des optionalen Commander-Prüfsteckers für Schutzkontaktsteckdose (044149) finden Sie im Anhand C.

4.4 SETTINGS-Einstellungen

Stellen Sie den Funktionswahlschalter zur Auswahl der Messfunktion auf **SETTINGS**, um folgende Einstellungen am Prüfgerät vorzunehmen:

- SPEICHER (Daten abfragen, Daten löschen, gesamten Speicher löschen)
- SPRACHE auswählen (GB, D, E, F, NL)
- DATUM/ZEIT einstellen
- ERDUNGSSYSTEM (TN/TT- oder IT-Netz)
- RCD/FI-PRÜFUNG (Prüfung gemäß EN 61008/ EN 61009, IEC 60364-4-41, BS 7671, AS/NZS 3017)
- **ISC FAKTOR Einstellung** (0,20-3,00)
- Commander EIN/AUS
- WERKSDATEN zurücksetzen
- ZANGEN Einstellungen (Auswahl der optionalen Stromzangenadapter BENNING CC 1 (044037), BENNING CC 2 (044110), BENNING CC 3 (044038))

Tasten

AUF/AB	Auswahl der Option.
TEST	Bestätigt ausgewählte Option.
ESC/ Funktions- wahlschalter	Zurück/Abbruch ohne Änderung.

4.4.1 Speicher

In diesem Menü können gespeicherte Daten aufgerufen, die Daten eines Messpunktes oder der komplette Speicher gelöscht werden. Siehe Kapitel **6 Messwertverwaltung** für weitere Informationen.

EINSTELLUNGEN

SPRACHE AUSWÄHLEN DATUM/ZEIT EINST. ERDUNGSSYSTEM RCD/FI PRÖFUNG

Abbildung 4.3:

SETTINGS-Einstellungen

SPEICHER

Abbildung 4.4: Speicheroptionen

Tasten

AUF/AB	Auswahl der Option.
TEST	Bestätigt ausgewählte Option.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

4.4.2 Sprache

In diesem Menü kann die Sprache eingestellt werden.

SPRACHE AUSWÄH	LEN	
ENGLISH		
DEUTSCH		
ESPAÑOL		
FRANCAIS		-
NEDERLANDS		

Abbildung 4.5: Sprache wählen

Tasten

AUF/AB	Auswahl der Sprache.
TEST	Bestätigt die ausgewählte Sprache und kehrt zum Einstellungs-Menü zurück.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

4.4.3 Datum und Uhrzeit

In diesem Menü können Datum und Uhrzeit eingestellt werden.

DATUM⁄ZEIT EINST.	
12:00 Ø 1 . Jan. 2000	Ō
Abbildung 1 6:	

Abbildung 4.6: Datum und Uhrzeit einstellen

Tasten

ТАВ	Auswahl des Datum-/Uhrzeitfeldes.
AUF/AB	Ändert ausgewähltes Feld.
TEST	Bestätigt die Änderung und kehrt zum Einstellungs-Menü zurück.
ESC	Zurück/Abbruch zum Einstellungs-Menü
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

Anmerkung:

Wenn die Batterien länger als 1 Minute entfernt werden, gehen die Einstellungen für Datum und Uhrzeit verloren.

4.4.4 Erdungssystem (Versorgungsnetz)

In diesem Menü kann das vorhandene Erdungssystem (Versorgungsnetz) eingestellt werden.

Folgende Optionen sind vorhanden:

- TN/TT-Netz.
- □ IT-Netz.

ERDUNGSSYSTEM	
TN/TT	
IT	
	lň
Abbildund	γ47·

Abbildung 4.7: Auswahl des Erdungssystems

Tasten

AUF/AB	Auswahl des Erdungssystems.				
TEST	Bestätigt das ausgewählte Erdungssystem und kehrt zum Einstellungs-Menü zurück.				
ESC	Zurück/Abbruch zum Einstellungs-Menü.				
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.				

4.4.5 FI/RCD-Prüfung

In diesem Menü wird die für die FI/RCD-Prüfung verwendete Norm eingestellt.

Tasten

AUF/AB	Auswahl der Norm.		
TEST	Bestätigt die ausgewählte Norm und kehrt zum Einstellungs-Menü zurück.		
ESC	Zurück/Abbruch zum Einstellungs-Menü.		
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.		

Die maximalen FI/RCD-Abschaltzeiten sind von Norm zu Norm unterschiedlich. Die Zeiten für die einzelnen Normen sind unten aufgeführt. Standardmäßig sind die Abschaltzeiten gemäß Norm EN 60364-4-41 voreingestellt. Die Norm EN 60364-4-41 definiert gemäß Tabelle 41.1 unterschiedliche Abschaltzeiten für TN/IT-Netze und TT-Netze.

Auslösezeiten nach EN 60364-4-41 (VDE 0100-410):

	Uo	$1/2 \times I_{\Delta N}^{*)}$	Ι _{ΔN}	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
	≤120 V	t_{Δ} > 800 ms	t _∆ ≤ 800 ms		
111/11	≤230 V	t_{Δ} > 400 ms	t _∆ ≤ 400 ms	t 150 mg	t < 10 mg
тт	≤120 V	t _∆ > 300 ms	t _∆ ≤ 300 ms	$t_{\Delta} < 150 \text{ ms}$	$l_{\Delta} < 40 \text{ ms}$
11	≤230 V	t_{Δ} > 200 ms	t _∆ ≤ 200 ms		
			– 1		

Uo: Nennspannung Außenleiter gegen Erde

Beispiel für eine Bewertung der Auslösezeit für I_{∆N}, Uo: ≤230 V:

Einstellung	Auslösezeit t _a	Bewertungsfeld	
IEC 60364-4-41 TN/IT	< 400 ms	\checkmark	
	400 ms < t _∆ < 999 ms	×	
	> 999 ms	×	
IEC 60364-4-41 TT	< 200 ms	\checkmark	
	200 ms < t _∆ < 999 ms	×	
	> 999 ms	×	

Auslösezeiten nach EN 61008/EN 61009 (VDE 0664-10/VDE 0664-20):

	$1/_{2} \times I_{\Delta N}^{*)}$	$I_{\Delta}N$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
Allgemeine FI/RCDs (nicht verzögert)	t_{Δ} > 300 ms	t_{Δ} < 300 ms	t _∆ < 150 ms	t_{Δ} < 40 ms
Selektive FI/RCD (verzögert)	t_{Δ} > 500 ms	130 ms < t _∆ < 500 ms	60 ms < t_{Δ} < 200 ms	50 ms < t_{Δ} < 150 ms

Auslösezeiten nach **BS 7671:**

	$1/2 \times I_{\Delta N}^{*)}$	$I_{\Delta}N$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
Allgemeine FI/RCDs (nicht verzögert)	t∆ > 1999 ms	t_{Δ} < 300 ms	t _∆ < 150 ms	t _∆ < 40 ms
Selektive FI/RCD (verzögert)	t∆ > 1999 ms	130 ms < t_{Δ} < 500 ms	60 ms < t _∆ < 200 ms	50 ms < t _∆ < 150 ms

Auslösezeiten nach AS/NZS 3017**):

		¹ / ₂ ×Ι _{ΔΝ} ^{*)}	$I_{\Delta}N$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$		
FI/RCD-	I _{∆N} [mA]	t_{Δ}	t_{Δ}	t_{Δ}	t_{Δ}	Anmerkung	
Тур							
1	≤ 10		40 ms	40 ms	40 ms		
П	> 10 ≤ 30	> 999 ms	300 ms	150 ms	40 ms	Maximalo Absobaltzoit	
111	> 30		300 ms	150 ms	40 ms	Maximale Abschaltzeit	
NG	> 30	> 000 mc	500 ms	200 ms	150 ms		
10 2	> 50	> 333 1115	130 ms	60 ms	50 ms	Mini. nicht auslösende Zeit	

^{*)} Mindestprüfzeit für Strom von $\frac{1}{2} \times I_{\Delta N}$, FI/RCD darf nicht auslösen.

^{**)} Prüfstrom und Messgenauigkeit entsprechen den Anforderungen von AS/NZS 3017.

Maximale Prüfzeiten und	gewählter Prüfstron	n für allgemeine	(nicht verzögerte) FI/RCD:
-------------------------	---------------------	------------------	-------------------	-----------

Standard	$1/2 \times I_{\Delta N}$	I _Δ N	2×I _{ΔN}	$5 \times I_{\Delta N}$
EN 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
EN 61008/EN 61009	300 ms	300 ms	150 ms	40 ms
BS 7671	2000 ms	300 ms	150 ms	40 ms
AS/NZS 3017 (I, II, III)	1000 ms	1000 ms	150 ms	40 ms

Maximale Prüfzeiten und gewählter Prüfstrom für selektive (verzögerte) FI/RCD:

Standard	$1/2 \times I_{\Delta N}$	$I_{\Delta}N$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
EN 60364-4-41	1000 ms	1000 ms	200 ms	150 ms
EN 61008/EN 61009	500 ms	500 ms	200 ms	150 ms
BS 7671	2000 ms	500 ms	200 ms	150 ms
AS/NZS 3017 (IV)	1000 ms	1000 ms	200 ms	150 ms

4.4.6 Isc-Faktor (Skalierungsfaktor)

In diesem Menü wird der Isc-Faktor (Skalierungsfaktor) zur Berechnung des Kurzschlussstroms (Ik) in der Funktion ZI (L-N/L) und Zs (L-PE) eingestellt.

Auswahl des Isc-Faktors

Tasten

AUF/AB	Ändert den Isc-Faktor.
TEST	Bestätigt den eingestellten Isc-Faktor.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

Der Kurzschlussstrom Ik im Versorgungssystem ist für die Auswahl und die Prüfung der Schutzschaltungen (Sicherungen, Überstromsicherungseinrichtungen, FI/RCDs) von hoher Bedeutung.

Der Standardwert des Isc-Faktors (Ik) beträgt 1,00. Der Wert ist den örtlichen Bestimmungen entsprechend einzustellen. Der Isc-Faktor ist in dem Bereich von 0,20 ÷ 3,00 einstellbar.

4.4.7 Commander EIN/AUS

In diesem Menü kann der Commander aktiviert oder deaktiviert werden.

Abbildung 4.10: Auswahl der Commander-Unterstützung

COMMANDER EINZAUS COMMANDER EIN COMMANDER AUS

Tasten

AUF/AB	Auswahl Commander EIN/Commander AUS.
TEST	Bestätigt die ausgewählte Option.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

Anmerkung:

Die Option Commander AUS ist dafür gedacht, die Bedientasten des Commanders (außer Taste Hintergrundbeleuchtung) zu deaktivieren. Die Deaktivierung des Commanders ist dann sinnvoll, wenn starke Störquellen die Funktion des Commanders beeinflussen.

4.4.8 Werkseinstellungen

In diesem Menü können die Einstellungen, die Messparameter und die Grenzwerte des Prüfgerätes auf Werkseinstellungen zurückgesetzt werden.

WERKSDATEN
Kontrast, Sprache,
Standarts und Paramet
ereinstellungen werden zurückgesetzt +

Abbildung 4.11: Abfrage zur Werkseinstellung

Tasten

AUF/AB	Auswahl der Option [JA, NEIN].
TEST	Bestätigt die ausgewählte Option.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

Anmerkung:

- Wenn auf Werkeinstellung zur
 ückgesetzt wird, gehen alle vorgenommenen Einstellungen verloren!
- Wenn die Batterien länger als 1 Minute entfernt werden, gehen alle vorgenommenen Einstellungen verloren.

Die Werkseinstellungen sind wie folgt definiert:

Einstellungen des Prüfgerätes	Voreinstellung
Sprache	Deutsch
Kontrast	50 %
Erdungssystem	TN/TT
Isc-Faktor	1,00
FI/RCD-Normen	EN 60364-4-41
Commander-Prüfspitze	EIN
Einstellungen der Stromzangen	BENNING CC 3

Messfunktion	Baramatar/Cranzurart	
Unterfunktion	Parameter/Grenzwert	
RE	Ohne Grenzwert	
R ISO	Ohne Grenzwert	
	Nennprüfspannung: 500 V	
R LOW	Ohne Grenzwert	
DURCHGANG	Ohne Grenzwert	
ZI (L-N/L) Leitungsimpedanz	Sicherungstyp: keine ausgewählt	
ΔU Spannungsfall	ΔU: 4,0 %, Z _{REF} : 0,00 Ω	
Zs (L-PE) Schleifenimpedanz	Sicherungstyp: keine ausgewählt	
Zs rcd	Sicherungstyp: keine ausgewählt	
FI/RCD	RCD t	
	Nennwert Differenzialstrom: $I_{\Delta N} = 30 \text{ mA}$	
	FI/RCD-Typ: AC, nicht verzögert	
	Prüfstrom mit Polarität bei Beginn:	
	Grenzwert Berührungsspannung: 50 V	
	Stromfaktor: ×1	

Anmerkung:

 Das Prüfgerät kann auch auf die Werkseinstellungen zurückgesetzt werden, wenn die TAB-Taste während des Einschaltens gedrückt wird.

4.4.9 Einstellungen der Stromzangen

Im Menü **ZANGEN Einstellungen** kann der C1-Messeingang auf den verwendeten Stromzangenadapter eingestellt werden.

ZANGEN EINSTELLUNGEN
Model: BENNING CC3 Bereich: 408
Ratio: 10mV AC/1A A

MEM : SPEICHERN Abbildung 4.12: Einstellung des Stromzangen-Messeingangs

Einstellparameter:

Modell	BENNING CC 1
Messbereich	400 A AC
Modell	BENNING CC 2
Messbereich	20 A AC
Modell	BENNING CC 3
Messbereich	40 A/ 300 A AC/DC

Auswahl der Parameter

Tasten

AUF/AB	Auswahl der Optionen.
TEST	Bestätigt die ausgewählte Option.
МЕМ	Speichert die Einstellungen.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

Änderung der ausgewählten Parameter

Tasten

AUF/AB	Ändert den Parameter.
TEST	Bestätigt den Parameter.
МЕМ	Speichert die Einstellungen.
ESC	Zurück/Abbruch zum Einstellungs-Menü.
Funktionswahlschalter	Zurück/Abbruch zur ausgewählten Messfunktion.

Anmerkung:

 Der Messbereich des Pr
üfger
ätes muss ber
ücksichtigt werden. Der Messbereich der Stromzange kann h
öher sein als der des Pr
üfger
ätes.

5 Messungen

5.1 TRMS Spannung, Frequenz und Phasenfolge

Die anliegenden Spannungen an den Prüfanschlüssen werden über den Anschlussmonitor permanent angezeigt. In dem Messbereich **TRMS SPANNUNG** (Echt-Effektivwert der Spannung) können die Messwerte für Spannung (AC/DC), Frequenz und die Phasenfolge (Drehfeld) auch gespeichert werden. Die Messungen werden entsprechend der Norm EN 61557-7 durchgeführt.

Tasten-Funktion gemäß Kapitel 4.2 Funktionswahlschalter

TRMS SPANN	JNG
Uln : 230V Ulpe: 230V Unpe: 0V	f: 50.0Hz
•	
Abbildu	ing 5 1.

Abbildung 5.1: Spannung im Einphasensystem

Prüfparameter

Es müssen keine Parameter eingestellt werden.

Anschlussplan

Abbildung 5.2: Anschluss der 3-Leiter-Prüfleitung und des optionalen CEE-Messadapters (044148) im Dreiphasensystem

Abbildung 5.3: Anschluss des optionalen Commander-Prüfsteckers (044149) und der 3-Leiter-Prüfleitung im Ein-/Dreiphasensystem

Durchführung der Spannungsmessung

- □ Wählen Sie mit dem Funktionswahlschalter die Schaltstellung V≃
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.2 und Abbildung 5.3).
- Des Speichern Sie das Messergebnis durch Drücken der Taste MEM.

Die Messung wird unmittelbar nach Auswahl der Funktion TRMS SPANNUNG ausgeführt.

Abbildung 5.4: Beispiele für Spannungsmessungen im Einphasen- und Dreiphasensystem

Angezeigte Ergebnisse für Einphasensysteme:

UIn Spannung zwischen Phasen und Neutralleiter

Ulpe Spannung zwischen Phase und Schutzleiter

Unpe Spannung zwischen Neutral- und Schutzleiter

f..... Frequenz

Angezeigte Ergebnisse für Dreiphasensysteme:

U12..... Spannung zwischen den Prüfklemmen L1 und L2

U13..... Spannung zwischen den Prüfklemmen L1 und L3

U23..... Spannung zwischen den Prüfklemmen L2 und L3

1.2.3 richtiger Anschluss - Rechtsdrehfeld

3.2.1 falscher Anschluss - Linksdrehfeld

f..... Frequenz

Angezeigte Ergebnisse für IT-System:

U12..... Spannung zwischen den Prüfklemmen L1 und L2

U1pe Spannung zwischen Prüfklemmen L1 und PE

U2pe Spannung zwischen Prüfklemmen L2 und PE

f..... Frequenz

5.2 Isolationswiderstand

Die Messung des Isolationswiderstandes wird durchgeführt, um den ordnungsgemäßen Zustand der Isolation nachzuweisen und eine Gefährdung durch Elektrizität auszuschließen.

Typische Anwendungsfälle sind:

- Isolationswiderstand zwischen den aktiven Leitern (L/N) der Anlage und dem Schutzleiter/Erde (PE) => Schutz vor elektrischem Schlag,
- Isolationswiderstand zwischen den aktiven Leitern (L/N) der Anlage => Schutz vor Kurzschluss (Überstrom) und Gewährleistung der Funktionssicherheit,
- □ Isolationswiderstand nicht leitender Räume (Wände und Böden),
- □ Isolationswiderstand der Erdungskabel und
- U Widerstand von halbleitenden (antistatischen) Böden.

Tasten-Funktion gemäß Kapitel 4.2 Funktionswahlschalter

Abbildung 5.5: Isolationswiderstand

Prüfparameter

Uiso	Nennwert Prüfspannung [50 V, 100 V, 250 V, 500 V, 1000 V]
Grenzwert	Mindestwert für den Isolierwiderstand [ohne (), 0,01 M Ω ÷ 200 M Ω]

Anschlussplan

Abbildung 5.6: Anschluss der 3-Leiter-Prüfleitung und der Commander-Prüfspitze

Durchführung der Isolationswiderstandsmessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung R ISO.
- Des Stellen Sie die erforderliche Prüfspannung und den Grenzwert ein (optional).
- □ Schalten Sie das Prüfobjekt spannungsfrei und entladen Sie vorhandene Kapazitäten.
- La Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.6).
- Drücken Sie die Taste TEST, um die Messung zu starten. Ein Doppelklick auf die Taste TEST (MΩ blinkt) bewirkt eine fortlaufende Messung. Ein weiterer Tastendruck beendet die Messung.
- U Warten Sie nach Abschluss der Messung, bis das Prüfobjekt vollständig entladen ist.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Abbildung 5.7: Beispiel Isolationswiderstandsmessung

Angezeigte Ergebnisse:

R Isolationswiderstand

Um Prüfspannung (tatsächlicher Wert)

Achtung:

- Die Isolationswiderstandsmessung darf nur an spannungsfreien Prüfobjekten durchgeführt werden!
- Bei der Messung des Isolationswiderstandes zwischen Leitern der Anlage müssen alle Lasten getrennt und alle Schalter geschlossen sein.
- Berühren Sie während der Messung bzw. vor der vollständigen Entladung, das Prüfobjekt nicht. Es besteht die Gefahr eines Stromschlages!
- Wenn eine Isolationswiderstandsmessung an einem kapazitiven Objekt durchgeführt wird, erfolgt die automatische Entladung unter Umständen zeitverzögert. Das Warnsymbol und die tatsächliche Spannung werden während der Entladung angezeigt.
- Schließen Sie Prüfleitungen nicht an externe Spannungen über 550 V (AC oder DC) an, damit das BENNING IT 130 nicht beschädigt wird.

5.3 Niederohmwiderstand/Durchgangsprüfung

Die Messung des/der Niederohmwiderstandes/Durchgangsprüfung dient der Prüfung der Schutz-, Erdungs- und Potentialausgleichsleiterverbindungen einer elektrischen Anlage. Es stehen zwei Unterfunktionen zur Verfügung:

- RLOWΩ Widerstandsmessung gemäß EN 61557-4 mit einem Prüfstrom von 200 mA und Polaritätswechsel
- DURCHGANG kontinuierliche Durchgangspr
 üfung mit einem reduzierten Pr
 üfstrom von 7 mA.

Tasten-Funktion gemäß Kapitel 4.2 Funktionswahlschalter

Niederohmwiderstand RLOW Ω mit 200 mA Prüfstrom

Prüfparameter

Prüfung	Unterfunktion [R LOWΩ, DURCHGANG]
Grenzwert	Maximaler Widerstand [ohne (), 0,1 Ω ÷ 20,0 Ω]

Zusätzlicher Prüfparameter für Unterfunktion Durchgangsprüfung

	Summer EIN (ertönt wenn Widerstand geringer ist als der eingestellter Grenzwert)
•	oder AUS

5.3.1 Niederohmwiderstand mit 200 mA Prüfstrom

Die Widerstandsmessung wird mit automatischer Polaritätsumkehrung der Prüfspannung durchgeführt.

Anschlussplan

Durchführung der Niederohmmessung R LOWΩ

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung R LOW.
- Stellen Sie die Unterfunktion auf <u>R LOWΩ</u>.
- □ Stellen Sie den Grenzwert ein (optional).
- Schließen Sie die Pr
 üfleitungen an das Pr
 üfger
 ät und kompensieren sie, falls erforderlich, den Pr
 üfleitungswiderstand (siehe Kapitel 5.3.3 Kompensation (Nullabgleich) des Pr
 üfleitungswiderstandes).
- Schalten Sie das Prüfobjekt spannungsfrei und entladen Sie vorhandene Kapazitäten.
- Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.9).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Abbildung 5.10: Beispiel Niederohmmessung R LOW Ω

Angezeigte Ergebnisse:

R R LOW Ω -Niederohmwiderstand

R+ Teilergebnis bei positiver Polarität

R-..... Teilergebnis bei negativer Prüfpolarität

5.3.2 Durchgangsprüfung mit 7 mA Prüfstrom

Diese Prüffunktion ist vergleichbar mit der Durchgangsprüfung eines Digital-Multimeters oder Durchgangsprüfers mit geringem Prüfstrom. Die kontinuierliche Prüfung erfolgt ohne Polaritätsumkehr und kann zur Prüfung von induktiven Komponenten verwendet werden.

Anschlussplan

Abbildung 5.11: Anwendung der Commander-Prüfspitze und 3-Leiter-Prüfleitung

Durchführung der Durchgangsprüfung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung R LOW.
- Stellen Sie die Unterfunktion auf DURCHGANG.
- □ Stellen Sie den Grenzwert ein (optional).
- Schließen Sie die Pr
 üfleitungen an das Pr
 üfger
 ät und kompensieren sie, falls erforderlich, den Pr
 üfleitungswiderstand (siehe Kapitel 5.3.3 Kompensation (Nullabgleich) des Pr
 üfleitungswiderstandes).
- Schalten Sie das Prüfobjekt spannungsfrei und entladen Sie vorhandene Kapazitäten.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.11).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- Drücken Sie die Taste **TEST** erneut, um die Messung zu beenden.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Abbildung 5.12: Beispiel Durchgangsprüfung

Angezeigtes Ergebnis:

R Widerstand

5.3.3 Kompensation (Nullabgleich) des Prüfleitungswiderstandes

Dieses Kapitel beschreibt, wie der Widerstand der Prüfleitungen in der Funktion Niederohmmessung (R LOWΩ) und Durchgangsprüfung (DURCHGANG) kompensiert werden kann. Die Kompensation ist notwendig, da der Prüfleitungswiderstand und der Innenwiderstand des Prüfgerätes das Messergebnis beeinflussen können. Die Kompensation der Prüfleitungen ist insbesondere bei der Verwendung unterschiedlicher Messleitungslängen notwendig.

Das Symbol wird angezeigt, wenn der Widerstand der Prüfleitungen erfolgreich kompensiert wurde.

Anschlussplan

Abbildung 5.13: kurzgeschlossene Prüfleitungen

Durchführung der Kompensation

Wählen Sie die Funktionen **R LOWΩ** bzw. **DURCHGANG** aus.
 Schließen Sie die Prüfleitungen an das Prüfgerät und schließen Sie die Prüfleitungen kurz (siehe *Abbildung 5.13*).
 Drücken Sie die Taste **TEST**, um die Widerstandsmessung durchzuführen.
 Drücken Sie die Taste **CAL**, um den Leitungswiderstand zu kompensieren.

Abbildung 5.14: Ergebnis vor der Kalibration

Abbildung 5.15: Ergebnis nach der Kalibration

Anmerkung:

Der höchste Wert für die Pr
üfleitungskompensation ist 5 Ω. Sollte der Widerstand h
öher sein, wird der Kompensationswert auf den Ausgangswert zur
ückgesetzt.

Das Symbol wird angezeigt, wenn der Widerstand der Prüfleitungen nicht kompensiert wurde.

5.4 Prüfen von Fehlerstrom-Schutzeinrichtungen FI/RCDs

Bei der Prüfung von Fehlerstrom-Schutzeinrichtungen in FI/RCD-geschützten Anlagen sind eine Reihe von Prüfungen und Messungen notwendig. Die Messungen basieren auf Grundlage der Norm EN 61557-6.

Folgende Prüfungen und Messungen können ausgeführt werden:

- Berührungsspannung, Auslösezeit, Auslösestrom und
- automatische FI/RCD-Prüfung.

Abbildung 5.16: FI/RCD-Prüfungen

Prüfparameter

Prüfung	Unterfunktion [Uc, RCDt, RCD I, AUTO]	
$I_{\Delta N}$	Nenn-Auslösedifferenzstrom I _{AN}	
	[10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA].	
FI/RCD-	Typ [AC, A, F, B, B+].	
Тур	Startpolarität [∼,∽,^–,∽, 🙅, 🖳].	
	Eigenschaften	
	[selektiv 🔄, allgemein nicht verzögert 🗔, PRCD, PRCD-S, PRCD-K].	
MUL	Multiplikator Prüfstrom [½x, 1x, 2 x, 5xl _{∆N}].	
Ulim	Grenzwert Berührungsspannung [25 V, 50 V].	

Anmerkung:

- Der Grenzwert der Berührungsspannung Ulim kann nur in der Unterfunktion Uc eingestellt werden.
- Selektive (verzögerte) FI/RCDs haben verzögerte Abschaltzeiten. Da die Berührungsspannungsmessung und andere FI/RCD-Prüfungen die verzögerten FI/RCDs beeinflussen, dauert es einen Moment, bis diese wieder im normalen Zustand sind. Daher wird eine Verzögerung von 30 Sekunden eingefügt, bevor die standardmäßige Auslöseprüfung durchgeführt wird.
- Bei der Prüfung von einigen mobilen FI/PRCDs (z.B. PRCD-K), bei denen der Schutzleiter gegensinnig durch den Wandler geführt ist, löst dieser mobile FI/PRCD bereits bei dem 0,5-fachen Wert des Nenn-Auslösedifferenzstrom aus. Das Prüfgerät bewertet die vorzeitige Auslösung als "Fehlauslösung" und bricht die Prüfung ohne Messergebnis ab. Wenn diese Prüfung mit positivem Ergebnis durchgeführt worden ist, dass also nachgewiesen wurde, dass die Auslösung des mobilen FI/PRCD bei dem 0,5fachen Wert des Nenn-Auslösedifferenzstrom erfolgt und somit der Schutzleiter nicht unterbrochen ist, kann durch Umkontaktieren des Schutzleiters die Prüfung weitergeführt werden. Anstatt des Schutzleiters (PE) der Kupplungsdose muss bei der weiteren Prüfung der Schutzleiter (PE) einer benachbarten Steckdose kontaktiert

werden. Die Prüfung kann dann wie bei einem normalen FI/RCD Schutzschalter durchgeführt werden.

Anschlussplan

Abbildung 5.17: Anschluss des optionalen Commander-Prüfsteckers (044149) und der 3-Leiter-Prüfleitung

5.4.1 Berührungsspannung (Uc)

Leckstrom, der über die Schutzleiterverbindungen gegen Erde abfließt, verursacht einen Spannungsabfall am Erdungswiderstand, also eine Spannungsdifferenz zwischen dem PE-Potentialausgleich und Erde. Diese Spannungsdifferenz bezeichnet man als Berührungsspannung und liegt an allen zugänglichen leitenden Teilen, die an die Schutzerde PE angeschlossen sind, an. Die Berührungsspannung sollte immer geringer als die maximal zulässige Berührungsspannung sein. Die Berührungsspannung wird mit einem Prüfstrom von unter $\frac{1}{2} I_{\Delta N}$ gemessen, um ein Auslösen des FI/RCD's zu vermeiden und anschließend auf den Nennwert $I_{\Delta N}$ zu normalisieren.

Durchführung der Berührungsspannungsmessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung FI/RCD.
- □ Stellen Sie die Unterfunktion auf Uc.
- □ Stellen Sie die Prüfparameter ein.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.17).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste MEM (optional).

Die angezeigte Berührungsspannung bezieht sich auf den Bemessungsdifferenzstrom der Fehlerstrom-Schutzeinrichtung und wird aus Sicherheitsgründen mit einem Faktor multipliziert. Der Faktor 1,05 wird angewendet, um eine negative Toleranz des Ergebnisses zu vermeiden. Tabelle 5.1 beschreibt die Berechnung der Berührungsspannung.

FI/RCD	-Тур	Berührungsspannung Uc proportional zu	Nennwert I _{∆N}
AC		1,05×I _{∆N}	alle
AC	Ś	2×1,05×I _{∆N}	
A, F		1,4×1,05×I _{∆N}	≥ 30 mA
A , F	Ś	2×1,4×1,05×I _{∆N}	
A, F		2×1,05×I _{∆N}	<30 mA
A , F	Ś	2×2×1,05×I _{∆N}	
B, B+		2×1,05×I _{∆N}	alle
B, B+	Ś	$2 \times 2 \times 1,05 \times I_{\Delta N}$	

Tabelle 5.1: Verhältnis zwischen Uc und $I_{\Delta N}$

Der Schleifenwiderstand ist ein rein indikativer Wert und wird aus der Berührungsspannung errechnet (ohne zusätzliche proportionale Faktoren): $R_L = \frac{U_C}{L}$.

Abbildung 5.18: Beispiel Berührungsspannungsmessung

Angezeigte Ergebnisse:

UcBerührungsspannung

RL Schleifenwiderstand (Fehlerschleifenwiderstand)

5.4.2 Auslösezeit (RCD t)

Mit der Auslösezeitmessung wird die Empfindlichkeit der Fehlerstrom-Schutzeinrichtung FI/RCD bei unterschiedlichen Nenn-Auslösedifferenzströmen I_{ΔN} geprüft.

Durchführung der Auslösezeitmessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung FI/RCD.
- □ Stellen Sie die Unterfunktion auf RCDt.
- Stellen Sie die Prüfparameter ein.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.17).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste MEM (optional).

Abbildung 5.19: Beispiel Auslösezeitmessung

Angezeigtes Ergebnis:

t.....Auslösezeit

UcBerührungsspannung

5.4.3 Auslösestrom (RCD I)

Zur Messung des Auslösestromes dient ein stetig ansteigender Fehlerstrom, um die Grenzempfindlichkeit der FI/RCD-Auslösung zu bestimmen. Das Prüfgerät erhöht den Fehlerstrom in kleinen Schritten innerhalb des gesamten Bereiches wie folgt:

|--|

	Ansteigender Fehlerstrom		Kurvonform
гилсо-тур	Startwert	Endwert	Kurvenionii
AC	$0,1 \times I_{\Delta N}$	$1,1\times I_{\Delta N}$	Sinus
A, F (I _{∆N} ≥ 30 mA)	$0,1 \times I_{\Delta N}$	1,5×I _{∆N}	aopulat
A, F (I _{∆N} = 10 mA)	$0,1 \times I_{\Delta N}$	2,2×I _{∆N}	gepuisi
B, B+	$0,1\times I_{\Delta N}$	2,2×I _{ΔN}	DC

Norm **EN 61008/EN 61009** (VDE 0664-10/VDE 0664-20), (Einstellung unter SETTINGS \rightarrow RCD/FI-Prüfung):

	Ansteigender Fehlerstrom		Kurvonform
гилсо-тур	Startwert	Endwert	Kuiveilloilli
AC	$0,2 \times I_{\Delta N}$	$1,1\times I_{\Delta N}$	Sinus
A, F (I _{∆N} ≥ 30 mA)	$0,2 \times I_{\Delta N}$	1,5×I _{∆N}	gopulet
A, F (I _{∆N} = 10 mA)	$0,2 \times I_{\Delta N}$	$2,2\times I_{\Delta N}$	gepuist
B, B+	$0,2\times I_{\Delta N}$	$2,2\times I_{\Delta N}$	DC

Der maximale Prüfstrom beträgt I_{Δ} (Auslösestrom) oder entspricht dem Endwert, falls der FI/RCD nicht auslöst.

Durchführung der Auslösestrommessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung FI/RCD.
- □ Stellen Sie die Unterfunktion auf RCDI.
- □ Stellen Sie die Prüfparameter ein.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.17).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Abbildung 5.20: Beispiel Auslösestrommessung

Angezeigte Ergebnisse:

I.....Auslösestrom

- UciBerührungsspannung bei Auslösestrom I oder Endwert, falls der FI/RCD nicht auslöst
- t.....Auslösezeit

5.4.4 Automatikprüfung

Die automatische FI/RCD-Prüffunktion ist dafür gedacht, eine vollständige FI/RCD-Prüfung (Auslösezeit bei verschiedenen Fehlerströmen, Auslösestrom und Berührungsspannung) in einer vom Prüfgerät gesteuerten Abfolge an automatischen Prüfungen durchzuführen.

Zusätzliche Taste

HELP/DISPLAY	Sobald die Messung beendet wurde, wechselt die Taste HELP zwi-
	schen dem oberen und unteren Teil des Ergebnisfeldes hin und her.

Durchführung der Automatikprüfung

Sc	hritte der Automatikprüfung	Hinweis
	Wählen Sie mit dem Funktionswahlschalter die Schaltstellung	
	FI/RCD.	
	Stellen Sie die Unterfunktion auf AUTO.	
	Stellen Sie die Prüfparameter ein.	
	Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe	
	Abbildung 5.17).	
	Drücken Sie die Taste TEST , um die Messung zu starten.	Start der Prüfung
	Prüfung mit I _∆ N, 0° (Schritt 1).	FI/RCD muss auslösen
	FI/RCD einschalten.	
	Prüfung mit I _∆ N, 180° (Schritt 2).	FI/RCD muss auslösen
	FI/RCD einschalten.	
	Prüfung mit 5×I _∆ N, 0° (Schritt 3).	FI/RCD muss auslösen
	FI/RCD einschalten.	
	Prüfung mit 5×I _∆ N, 180° (Schritt 4).	FI/RCD muss auslösen
	FI/RCD einschalten.	
	Prüfung mit ½×I∆N, 0° (Schritt 5).	FI/RCD darf nicht auslösen
	Prüfung mit ½×I _∆ N, 180° (Schritt 6).	FI/RCD darf nicht auslösen
	Auslösestrom-Prüfung, 0° (Schritt 7).	FI/RCD muss auslösen
	FI/RCD einschalten.	
	Auslösestrom-Prüfung, 180° (Schritt 8).	FI/RCD muss auslösen
	FI/RCD einschalten.	
	Speichern Sie das Messergebnis durch Drücken der Taste	Ende der Prüfung.
	MEM (optional).	

Beispiel der Prüfschritte:

Schritt 7

Abbildung 5.21: Prüfschritte der Automatikprüfung

Abbildung 5.22: Die Taste HELP wechselt zwischen dem oberen und unteren Teil des Ergebnisfeldes hin und her.

Angezeigte Ergebnisse:

- **x1**.....Schritt 1 Auslösezeit ($I_{\Delta}=I_{\Delta N}$, 0^o)
- **x1**.....Schritt 2 Auslösezeit ($I_{\Delta}=I_{\Delta N}$, 180°)
- **x5**......Schritt 3 Auslösezeit (I_{Δ} =5× $I_{\Delta N}$, 0°)
- **x5**......Schritt 4 Auslösezeit ($I_{\Delta}=5 \times I_{\Delta N}$, 180°)
- **x**¹/₂......Schritt 5 Auslösezeit ($I_{\Delta}=1/2\times I_{\Delta N}, 0^{\circ}$)
- **x**¹/₂......Schritt 6 Auslösezeit ($I_{\Delta}=\frac{1}{2} \times I_{\Delta N}$, 180°)
- L.....Schritt 7 Auslösestrom (0°)
- L.....Schritt 8 Auslösestrom (180º)
- UcBerührungsspannung für Nennwert $I_{\Delta N}$

Hinweise:

- Die Automatikprüfung wird sofort gestoppt, sobald eine ungültige Bedingung vorliegt,
 z. B. Überschreitung der maximal zulässigen Berührungsspannung oder eine Auslösezeit außerhalb des zulässigen Bereiches.
- □ Bei der Automatikprüfung von FI/RCD's des Types A und F mit Nenn-Auslösedifferenzströmen von 300 mA, 500 mA und 1000 mA, wird die Prüfung von 5×I_ΔN nicht durchgeführt. In diesem Fall gilt die Prüfung als bestanden, wenn alle anderen Prüfungen bestanden werden.
- □ Die Auslösestrommessung (L, Schritt 7 und 8) wird für selektive FI/RCD's nicht durchgeführt.

5.5 Schleifenimpedanz und unbeeinflusster Kurzschlussstrom

Die Schleifenimpedanz ist ein komplexer Wechselstrom-Widerstand innerhalb einer Fehlerschleife (Erdschluss L-PE), bestehend aus Stromquelle, Außenleiter und Schutzleiter. Das Prüfgerät misst die Impedanz der Schleife und berechnet den Kurzschlussstrom. Die Messung entspricht den Anforderungen der Norm EN 61557-3.

Tasten-Funktion gemäß Kapitel **4.2 Funktionswahlschalter**

Prüfparameter

Prüfung	Auswahl der Unterfunktion Schleifenimpedanz [Zs, Zs rcd]
Sicherungstyp	Auswahl des Sicherungstypes [, gL/gG, B, C, K, D]
Nennstrom	Nennstrom der Sicherung
Auslösezeit	Maximale Auslösezeit der Sicherung
Lim (Grenzwert)	Untergrenze des unbeeinflussten Kurzschlussstromes
Siehe Anhang A Sicherungstabelle	

Anschlussplan

Abbildung 5.24: Anschluss des optionalen Commander-Prüfsteckers (044149) und der 3-Leiter-Prüfleitung

Durchführung der Schleifenimpedanzmessung

- □ Wählen Sie mit dem Funktionswahlschalter die Schaltstellung Zs (L-PE).
- □ Stellen Sie die Unterfunktion auf Zs oder Zs rcd (für Systeme mit FI/RCD's).
- Stellen Sie die Pr
 üfparameter ein.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.24).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Abbildung 5.25: Beispiel Schleifenimpedanzmessung

Angezeigte Ergebnisse:

Z..... Schleifenimpedanz Isc..... Unbeeinflusster Kurzschussstrom Lim..... Untergrenze des unbeeinflussten Kurzschlussstromes

Der unbeeinflusste Kurzschlussstrom I_{SC} wird wie folgt berechnet:

$$I_{SC} = \frac{Un \times k_{SC}}{Z}$$

wobei gilt:

Un...... Nennspannung L-PE (siehe Tabelle unten),

ksc....... Korrekturfaktor für Kurzschlussstrom Isc (siehe Kapitel 4.4.6 Isc-Faktor).

Un	Spannungsbereich (L-PE)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-PE}} \le 134 \text{ V})$
230 V	(185 V ≤ U _{L-PE} ≤ 266 V)

Hinweise:

- Hohe Schwankungen der Netzspannung können die Messergebnisse beeinflussen (Symbol A im LC-Display). In diesem Fall wird empfohlen die Messungen zu wiederholen und zu pr
 üfen, ob die Messergebnisse stabil sind.
- Die Messung des Schleifenimpedanz Zs löst die Fehlerstrom-Schutzeinrichtungen FI/RCD's aus.
- Wählen Sie die Messung Zs rcd, um das Auslösen einer Fehlerstrom-Schutzeinrichtung FI/RCD zu vermeiden.

5.6 Leitungsimpedanz und unbeeinflusster Kurzschlussstrom/ Spannungsfall

Die Leitungsimpedanz ist ein komplexer Wechselstrom-Widerstand innerhalb einer Stromschleife (Kurzschluss L-N bzw. L-L), bestehend aus Stromquelle, Außen- und Neutralleiter (Einphasensystem) bzw. zwischen zwei Außenleiter (Dreiphasensystem). Die Messung der Leitungsimpedanz entspricht den Anforderungen der Norm EN 61557-3.

Die Unterfunktion Spannungsfall überprüft, ob eine Spannung in einer elektrischen Anlage oberhalb eines zulässigen Wertes bleibt, wenn im Stromkreis der maximale Nennstrom der vorgeschalteten Sicherung fließt. Die Grenzwerte werden in der Norm EN 60364-5-52 beschrieben.

Unterfunktionen:

- ZI-Messung der Leitungsimpedanz gemäß EN 61557-3 und
- ΔU-Messung des Spannungsabfalls.

Tasten-Funktion gemäß Kapitel 4.2 Funktionswahlschalter

Leitungsimpedanz

Abbildung 5.27: Spannungsfall

Prüfparameter

Prüfung	Unterfunktion [Z] [AU]
Sicherungstyp	Auswahl des Sicherungstypes [, gL/gG, B, C, K, D]
Nennstrom	Nennstrom der Sicherung
Auslösezeit	Maximale Auslösezeit der Sicherung
Lim (Grenzwert)	Untergrenze des unbeeinflussten Kurzschlussstromes
Siehe Anhang A Sicherungstabelle	

Siehe Anhang A Sicherungstabelle.

Weiterer Prüfparameter für Spannungsfallmessung

|--|

5.6.1 Leitungsimpedanz und unbeeinflusster Kurzschlussstrom

Anschlussplan

Abbildung 5.28: Anschluss des optionalen Commander-Prüfsteckers (044149) und der 3-Leiter-Prüfleitung

Durchführung der Leitungsimpedanzmessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung ZI (L-N/L).
- □ Stellen Sie die Prüfparameter ein.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt. (siehe Abbildung 5.28)
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Abbildung 5.29: Beispiel Leitungsimpedanzmessung

Angezeigte Ergebnisse:

Z..... Leitungsimpedanz Isc..... Unbeeinflusster Kurzschlussstrom Lim...... Untergrenze des unbeeinflussten Kurzschlussstromes

Der unbeeinflusste Kurzschlussstrom wird wie folgt berechnet:

$$I_{SC} = \frac{Un \times k_{SC}}{Z}$$

wobei gilt:

Un....... Nennspannung L-N oder L1-L2 (siehe Tabelle unten),

ksc...... Korrekturfaktor für Kurzschlussstrom Isc (siehe Kapitel 4.4.6 Isc-Faktor).

Un	Spannungsbereich (L-N oder L1-L2)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} < 134 \text{ V})$
230 V	(185 V ≤ U _{L-N} ≤ 266 V)
400 V	(321 V < U _{L-L} ≤ 485 V)

Anmerkung:

- Hohe Schwankungen der Netzspannung können die Messergebnisse beeinflussen (Symbol H/H im LC-Display). In diesem Fall wird empfohlen die Messungen zu wiederholen und zu prüfen, ob die Messergebnisse stabil sind.

5.6.2 Spannungsfall

Der Spannungsfall wird, basierend auf der Differenz der Leitungsimpedanz an der Messstelle (z. B. Steckdose) und der Leitungsimpedanz an der Referenzstelle (z. B. der Verteilung), berechnet.

Anschlussplan

Abbildung 5.30: Anschluss des optionalen Commander-Prüfsteckers (044149) und der 3-Leiter-Prüfleitung

Durchführung der Spannungsfallmessung

Schritt 1: Messen der Impedanz Zref an der Referenzstelle

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung ZI (L-N/L).
- \Box Stellen Sie die Unterfunktion auf ΔU .
- □ Stellen Sie die Prüfparameter ein.
- Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.30).
- Drücken Sie die Taste CAL, um die Messung zu starten.

Schritt 2: Messen des Spannungsabfalls an der Messstelle

- Stellen Sie die Unterfunktion auf <u>AU</u>.
- □ Stellen Sie die Prüfparameter ein (der Sicherungstyp muss ausgewählt werden).
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.30).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- Speichern Sie das Messergebnis durch Drücken der Taste MEM (optional).

ل∆	4.0%	NU	16	5A	+
∆U Isc	%				
Ž-of	a 680				
	- 01 00/	L 23		N	0
		T	234 -		

Schritt 1 - Zref

Schritt 2 - Spannungsabfall Abbildung 5.31: Beispiel Spannungsfallmessung

Angezeigte Ergebnisse:

ΔU......Spannungsfall **Isc**.....Unbeeinflusster Kurzschlussstrom **Z**.....Leitungsimpedanz an der Messstelle **Zref**.....Leitungsimpedanz an der Referenzstelle

Der Spannungsfall wird wie folgt berechnet:

$$\Delta U[\%] = \frac{(Z - Z_{REH}) \cdot I_N}{U_N} \cdot 100$$

wobei gilt:

ΔU berechneter Spannungsfall

Z..... Leitungsimpedanz an der Messstelle

Z_{REF} Leitungsimpedanz an der Referenzstelle

I_N Nennstrom der Sicherung

U_N...... Nennspannung (siehe Tabelle unten)

Un	Spannungsbereich (L-N oder L1-L2)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} < 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-N}} \le 266 \text{ V})$
400 V	(321 V < U _{L-L} ≤ 485 V)

Hinweise:

- **u** Wenn die Referenzimpedanz nicht eingestellt wird, wird als Z_{REF} 0,00 Ω angenommen.
- Der Wert Z_{REF} wird durch Drücken der Taste CAL gelöscht (auf 0,00 Ω gesetzt), wenn das Prüfgerät nicht an eine Spannungsquelle angeschlossen ist.
- Der Wert I_{SC} wird wie im Kapitel *5.6.1 Leistungsimpedanz und unbeeinflusster Kurzschlussstrom* beschrieben, berechnet.
- Wenn die gemessene Spannung außerhalb der in der oben stehenden Tabelle aufgeführten Bereiche liegt, wird der Wert des ΔU nicht berechnet.
- Hohe Schwankungen der Netzspannung können die Messergebnisse beeinflussen (Symbol im LC-Display). In diesem Fall wird empfohlen die Messungen zu wiederholen und zu pr
 üfen, ob die Messergebnisse stabil sind.

5.7 Erdungswiderstand

Ein ordnungsgemäßer, zuverlässig wirksamer Erder ist eine wichtige Voraussetzung für die Funktion und Sicherheit von elektrischen Anlagen.

In Kombination mit dem optionalen Erdungsset (044113) können Erdungswiderstandsmessungen an Haupterdung, Blitzableiter und lokale Erder durchgeführt werden. Die Messung entspricht der Norm EN 61557-5.

Die Erdungswiderstandsmessung erfolgt über die 3-Leiter-Messmethode mit zwei Erdspießen.

Tasten-Funktion gemäß Kapitel **4.2 Funktionswahlschalter**

Prüfparameter

Grenzwert Maximaler Widerstand [ohne (---), 1 $\Omega \div 5 k\Omega$]

Durchführung der Erdungswiderstandsmessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung RE.
- □ Stellen Sie den Grenzwert ein (optional).
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.33 und 5.34).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

Anschlussplan

Abbildung 5.33: Anschluss des optionalen Erdungsset (044113) - Messung der Haupterdung

Abbildung 5.34: Anschluss des optionalen Erdungssets (044113) - Messung am Blitzableiter

Abbildung 5.35: Beispiel Erdungswiderstandsmessung

Angezeigte Ergebnisse:

R Erdungswiderstand

Rp Widerstand der S-Sonde, Sondenwiderstand (Potential)

Rc Widerstand der H-Sonde, Hilfserderwiderstand (Strom)

Hinweise:

- Ein zu hoher Widerstand der Sonden S und H können die Messergebnisse beeinflussen. In diesem Fall werden die Warnmeldungen "Rp" und "Rc" angezeigt. Eine GUT/ SCHLECHT-Bewertung erfolgt nicht.
- Hohe Störströme und -spannungen können die Messergebnisse beeinflussen. Das Prüfgerät zeigt dann die Warnmeldung - an.
- Die Sonden müssen in ausreichendem Abstand vom Prüfobjekt platziert werden. Der Abstand zwischen dem Erder (E/ES) und der Sonde (H) soll mindestens 5-mal größer sein als die Tiefe oder Länge des Erders (siehe Abb. 5.33 und 5.34).

5.8 Prüfung des Schutzleiteranschlusses

Bei neuen oder modifizierten Installationen kann es vorkommen, dass der Schutzleiter PE mit dem Außenleiter L (Phase) vertauscht wurde. Dies stellt eine äußerst gefährliche Situation dar! Darum ist es wichtig, den Schutzleiteranschluss auf das Vorhandensein einer Phasenspannung zu prüfen.

Die Prüfung des Schutzleiteranschlusses erfolgt automatisch bei den Messfunktionen ZI (L-N/L) Zs (L-PE) und FI/RCD durch Berührung (> 1 Sek.) der silbernen TEST-Taste am Prüfgerät, der Commander-Prüfspitze oder des optionalen Commander-Prüfsteckers (044149).

Beispiele für die Falschverdrahtung des PE-Schutzleiteranschlusses

Abbildung 5.36: Vertauschte L- und PE-Leiter – Phasenspannung am PE-Leiter wird durch Berührung der TEST-Taste am Commander-Prüfstecker (Option) erkannt.

Abbildung 5.37: Vertauschte L- und PE-Leiter – Phasenspannung am PE-Leiter wird durch Berührung der TEST-Taste am Prüfgerät erkannt.

Prüfung des Schutzleiteranschlusses

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung ZI (L-N/L), Zs (L-PE), oder FI/RCD.
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.36 und 5.37).
- Berühren Sie die silberne Berührungselektrode der TEST-Taste für mindestens zwei Sekunden.
- Wenn am PE-Anschluss die Phasenspannung angeschlossen ist, erscheint die Warn-

meldung im LC-Display des Prüfgerätes und der Summer des Prüfgerätes ertönt. Weitere Messungen in den Funktionen Zs (L-PE) und FI/RCD werden gesperrt.

Warnung:

Wenn am Schutzleiteranschluss die Phasenspannung erkannt wird, sofort alle Messungen stoppen und dafür sorgen, dass der Fehler abgestellt wird!

Hinweise:

- Eine Phasenspannung am Schutzleiter wird nicht erkannt, wenn der Bediener vom Boden oder den Wänden vollständig isoliert ist!
- □ Siehe Anhang C Commander

5.9 TRMS Strom über Stromzangenadapter

Diese Gerätefunktion ermöglicht die Messung von Last- und Ableitströmen über die optionalen Stromzangenadapter BENNING CC 1, BENNING CC 2 und BENNING CC 3 im TRMS-Mess-verfahren (Echt-Effektivwertmessverfahren). Das TRMS-Messverfahren garantiert ein richtiges Prüfergebnis auch im Falle von nichtsinusförmigen Signalen.

Anschlussplan

Abbildung 5.39: Anschluss des optionalen Stromzangenadapters BENNING CC 1, BENNING CC 2 oder BENNING CC 3

Durchführung der Strommessung

- Stromzangenadapter gemäß Kapitel 4.4.9 einstellen und an den Messeingang C1 anschließen.
- □ Wählen Sie mit dem Funktionswahlschalter die Schaltstellung A≃
- □ Umfassen Sie den einadrigen Leiter mit der Strommesszange (siehe Abbildung 5.39).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- Drücken Sie die Taste **TEST** erneut, um die Messung zu beenden.
- Description Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

TRMS STROM

▶⋳

Abbildung 5.40: Beispiel Strommessung

Angezeigtes Ergebnis:

I..... Strom

5.10 Erstfehler-Leckstrom ISFL im IT-Netz

Das IT-Versorgungsnetz ist ein Stromversorgungsnetz, das vom Schutzleiter isoliert ist – es ist ein nicht geerdetes Versorgungsnetz. Das Netz ist entweder nicht direkt geerdet oder über eine relativ hohe Impedanz mit der Erde verbunden. Es wird vorwiegend in Bereichen angewendet, in denen zusätzlicher Schutz vor elektrischen Unfällen notwendig ist. Ein typischer Einsatzbereich sind medizinische Operationsräume.

Ein erster Isolationsfehler zwischen einem Außenleiter und der Erde stellt eine Erdung dieses Leiters dar. Es besteht dann weiterhin weder ein Potentialunterschied zwischen leitfähigen Gehäusen und der Erde noch ein über die Erde geschlossener Stromkreis zum Transformator.

Die Messung des Erstfehler-Leckstromes wird ausgeführt, um den maximalen Strom zu messen, der von der geprüften Leitung (Außenleiter) in den Schutzleiter fließen könnte. Dieser Strom fließt durch den Isolationswiderstand und die Leiter-Erde-Kapazitäten zwischen den anderen Leitungen (Außenleitern) und Schutzleiter, wenn der Erstfehler als Kurzschluss zwischen der geprüften Leitung und PE angelegt wird.

Tasten-Funktion gemäß Kapitel 4.2 Funktionswahlschalter

Abbildung 5.41: Erstfehler-Leckstrom ISFL

Prüfparameter

Grenzwert Maximaler Erstfehler-Leckstrom [ohne (---), 3,0 mA ÷ 20,0 mA]

Anschlussplan

Abbildung 5.42: Anschluss der 3-Leiter-Prüfleitung

Abbildung 5.43: Anschluss der 3-Leiter-Prüfleitung in FI/RCD-geschützten Anlage

Durchführung der Erstfehler-Leckstrommessung

- □ Erdungssystem gemäß Kapitel 4.4.4 auf Netzform IT-Netz einstellen.
- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung RISO.
- □ Stellen Sie die Unterfunktion auf ISEL.
- □ Stellen Sie den Grenzwert ein (optional).
- □ Kontaktieren Sie die Prüfleitungen an das Prüfobjekt (siehe Abbildung 5.42 und 5.43).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste MEM (optional).

Abbildung 5.44: Beispiele Erstfehler-Leckstrommessung

Angezeigte Ergebnisse:

- Isc1 Erstfehler-Leckstrom beim ersten Fehler (Erdschluss) zwischen L1 und Schutzleiter PE
- Isc2..... Erstfehler-Leckstrom beim ersten Fehler (Erdschluss) zwischen L2 und Schutzleiter PE

5.11 Beleuchtungsstärke

Die Beleuchtungsstärkemessung kann zur Planung und Installation von Innen- und Außenbeleuchtungen eingesetzt werden. Der Anschluss des optionalen Beleuchtungssensors BENNING Luxmeter Typ B (044111) erfolgt über die RS 232 Schnittstelle.

Tasten-Funktion gemäß Kapitel 4.2 Funktionswahlschalter

SENSOR	3001u×
E:	_lux
▶	د <u>، ۳</u>
Abbi	ldung 5.45:
Beleuc	htungsstärke

Prüfparameter

Grenzwert Minimale Beleuchtung [ohne (---), 0,1 lux ÷ 20 klux]

Sensorpositionierung

Abbildung 5.46: Positionierung des Beleuchtungssensors

Durchführung der Beleuchtungsstärkemessung

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung LUX.
- □ Stellen Sie den Grenzwert ein (optional).
- □ Schließen Sie den Beleuchtungssensor an die PS/2 Buchse des Prüfgerätes an.
- Schalten Sie den Beleuchtungssensor ein und positionieren Sie den Sensor unter der Lichtquelle (siehe Abbildung 5.46).
- Drücken Sie die Taste **TEST**, um die Messung zu starten.
- □ Speichern Sie das Messergebnis durch Drücken der Taste **MEM** (optional).

SENSOR	- 3001ux	
e:462	2 _{10×}	<
	Č 🛛 🖓	

Abbildung 5.47: Beispiel Beleuchtungsstärkemessung

Angezeigtes Ergebnis:

E..... Beleuchtungsstärke

Hinweise:

- Schatten und ungleichmäßiger Lichteinfall beeinflussen das Messergebnis.
- Künstliche Lichtquellen erreichen erst nach einiger Zeit ihre volle Leistungsstärke (siehe technische Daten der Lichtquellen) und sollten daher solange eingeschaltet sein, bis sie diese Leistung erreichen, bevor die Messungen durchgeführt werden.

6 Messwertverwaltung

6.1 Speicherstruktur

Nach Durchführung der Messung können die Messergebnisse mit allen relevanten Messparametern im Prüfgerät gespeichert werden.

Der Speicher des Prüfgerätes ist in vier Ebenen gegliedert, wobei jede Ebene über 199 Speicherplätze verfügt. Die Anzahl der Messungen, die auf einem Speicherplatz abgelegt werden können, ist nicht beschränkt.

Das Anlagenstrukturfeld beschreibt den Speicherplatz der Messung (welches Objekt, Block, Sicherung und Messpunkt) und wie er erreicht werden kann.

Das Messergebnisfeld informiert über die Art und die Anzahl der Messungen, die zum ausgewählten Speicherplatz (Objekt, Block, Sicherung und Messpunkt) gehören.

DATEN ABFRAGEN
IOBJIOB.IEKT 001
[BLO]BLOCK 001
[FUSISICHERUNG 001
[CON]MESSPUNKT 001
> Nr.: 1/1
ERDE RE

Abbildung 6.1: Anlagenstrukturfeld und Messergebnisfeld

Die Vorteile der Speicherstrukturierung sind:

- Messergebnisse können entsprechend einer typischen elektrischen Anlage strukturiert und gespeichert werden.
- Die Struktur der zu pr
 üfenden elektrischen Anlage kann
 über die PC-Software BENNING PC-Win IT 130 erstellt und auf das Pr
 üfger
 ät BENNING IT 130
 übertragen werden (Upload von Anlagenstrukturen).
- Einfaches Durchsuchen von Anlagenstrukturen und zugehöriger Messergebnisse.
- Prüfberichte und ZVEH-Prüfprotokolle können nach dem Auslesen der Messergebnisse (Download) auf den PC mit Hilfe der Protokoll-Software BENNING PC-Win IT 130 erstellt werden.

	Menü Speicher
COBJOBJEKT 001 (DBLOCK 002 (FUSISICHERUNG 003 (CONIMESSPUNKT 004	Anlagenstrukturfeld
[овј]ОВЈЕКТ 001	 Ebene: OBJEKT: Standardname des Speicherplatz 001: Nummer des Speicherplatz
[⊮∟0]BLOCK 002	2. Ebene: BLOCK: Standardname des Speicherplatz 002: Nummer des Speicherplatz
FUSISTCHERLING 003	 3. Ebene: SICHERUNG: Standardname des Speicherplatz 003: Nummer des Speicherplatz
[CON]MESSPUNKT 004	 4. Ebene: MESSPUNKT: Standardname des Speicherplatz 004: Nummer des Speicherplatz
No.: 20 [132]	Anzahl der Messungen auf dem ausgewählten Speicherplatz [Anzahl der Messungen auf dem ausgewählten Speicherplatz und der untergeordneten Speicherplätze]

Anlagenstrukturfeld

Messergebnisfeld

SPANNUNG TRMS	Art der gespeicherten Messung auf dem ausgewählten Speicherplatz.
No.: 1/36	Nummer der ausgewählten Messung/Anzahl aller gespeicher- ten Messungen pro Speicherplatz.

Beispiel einer standardmäßigen Anlagenstruktur im Prüfgerät BENNING IT 130:

[OBJ] OBJEKT 001 [BLO] BLOCK 001 [FUS] SICHERUNG 001 [CON] MESSPUNKT 001 Nr.: 1/3 R ISO

Beispiel einer kundenspezifischen Anlagenstruktur im Prüfgerät BENNING IT 130:

[OBJ] Kunde Meyer [BLO] Verteiler EG [FUS] F1 Küche [CON] Steckdose 1 Nr.: 1/3 R ISO

Hinweis:

Die kundenspezifische Anlagenstruktur wurde über die Protokoll-Software BENNING PC-Win IT 130 erstellt und auf das Prüfgerät BENNING IT 130 übertragen. Einmal erstellte Anlagenstrukturen können in der Protokoll-Software BENNING PC-Win IT 130 gespeichert und für Wiederholungsprüfungen erneut auf das Prüfgerät übertragen werden.

6.2 Speichern von Messergebnissen

Nach Durchführung einer Messung können die Messergebnisse und zugehörige Parameter gespeichert werden (Symbol 🕞 erscheint im LC-Display). Drücken Sie die Taste **MEM**, um das Speichermenü aufzurufen.

FREI: 96,3% Freier Speicherplatz zur Speicherung der Messergebnisse.

Tasten im Anlagenstrukturfeld

ТАВ	Wählt den Speicherplatz (Objekt/Block/Sicherung/Messpunkt).
AUF/AB	Wählt die Nummer des ausgewählten Speicherplatzes (1 bis 199).
МЕМ	Speichert das Messergebnis im ausgewählten Speicherplatz.
ESC/TEST/	Zurück/Abbruch ohne Speichern.
Funktionswahlschalter	

Hinweise:

- Das Prüfgerät schlägt automatisch den zuletzt ausgewählten Speicherplatz für die Speicherung eines neuen Messergebnisses vor.
- Soll das Messergebnis am selben Speicherplatz wie das vorherige Messergebnis abgelegt werden, drücken Sie die Taste **MEM** zweimal.

6.3 Abrufen von Messergebnissen

Drücken Sie die Taste **MEM**, wenn noch kein Messergebnis zum Speichern vorliegt oder wählen Sie **SPEICHER**, **DATEN ABFRAGEN** im Menü **SETTINGS-Einstellungen**.

DATEN ABFRAGEN	
[0⊮J10BJEKT 001	
EUSI	
[NOO]	
No.: 0 [60]	

Abbildung 6.3: Menü Speicherabruf – Anlagenstrukturfeld ausgewählt

Abbildung 6.4: Menü Speicherabruf – Messergebnisfeld ausgewählt

Tasten im Anlagenstrukturfeld

ТАВ	Wählt den Speicherplatz (Objekt/Block/Sicherung/Messpunkt).
AUF/AB	Wählt die Nummer des ausgewählten Speicherplatzes (1 bis 199).
ESC/ Funktionswahlschalter	Zurück/Abbruch zur Messfunktion.
TEST/MEM	Wählt das zugehörige Messergebnisfeld.

Tasten im Messergebnisfeld

AUF/AB	Wählt die gespeicherte Messung aus.
ESC/TAB	Zurück/Abbruch zum Anlagenstrukturfeld.
Funktionswahlschalter	Zurück/Abbruch zur Messfunktion.
TEST/MEM	Abruf der ausgewählten Messergebnisse.

Abbildung 6.5: Abruf gespeicherter Messergebnisse

Tasten im Messergebnisfeld (Messergebnisse werden angezeigt)

AUF/AB	Ruft Messergebnisse auf, die sich am ausgewählten Speicher- platz befinden.	
MEM/ESC	Zurück/Abbruch zum Messergebnisfeld.	
TEST	Zurück/Abbruch zum Anlagenstrukturfeld.	
Funktionswahlschalter	Zurück/Abbruch zur Messfunktion.	

6.4 Löschen von Messergebnissen

6.4.1 Löschen des gesamten Messwertespeichers

Wählen Sie mit dem Funktionswahlschalter die Schaltstellung **SETTINGS**-Einstellungen. Wählen Sie **GES. SPEICHER LÖSCHEN** im Menü **SPEICHER.** Es erscheint folgender Warnhinweis:

Abbildung 6.6: Gesamten Messwertespeicher löschen

Tasten

Abbildung 6.7: Löschen des Messwertespeichers

6.4.2 Löschen aller Messungen pro Speicherplatz und Unterspeicherplätze

Wählen Sie mit dem Funktionswahlschalter die Schaltstellung **SETTINGS**-Einstellungen. Wählen Sie **DATEN LÖSCHEN** im Menü **SPEICHER.**

Abbildung 6.8: Löschen aller Messungen pro Speicherplatz und Unterspeicherplätze

Tasten im Anlagenstrukturfeld

ТАВ	Wählt den Speicherplatz (Objekt/Block/Sicherung/Messpunkt).
AUF/AB	Wählt die Nummer des ausgewählten Speicherplatzes (1 bis 199).
Funktionswahlschalter	Zurück/Abbruch zur Messfunktion.
ESC	Zurück/Abbruch zum Speichermenü.
TEST	Ruft ein Dialogfenster zum Löschen aller Messungen am ausge- wählten Speicherplatz und der untergeordneten Speicherplätze auf. Ein erneuter Tastendruck löscht alle Messungen am Speicherplatz und der untergeordneten Speicherplätze.

6.4.3 Löschen einer einzelnen Messung

Wählen Sie mit dem Funktionswahlschalter die Schaltstellung **SETTINGS**-Einstellungen. Wählen Sie **DATEN LÖSCHEN** im Menü **SPEICHER.**

Abbildung 6.9: Löschen einer einzelnen Messung (Anlagenstrukturfeld ausgewählt)

Tasten im Anlagenstrukturfeld

ТАВ	Wählt den Speicherplatz (Objekt/Block/Sicherung/Messpunkt).	
AUF/AB	Wählt die Nummer des ausgewählten Speicherplatzes (1 bis 199).	
Funktionswahlschalter	Zurück/Abbruch zur Messfunktion.	
ESC	Zurück/Abbruch zum Speichermenü.	
MEM	Ruft das Messergebnisfeld einzelner Messungen auf.	

Tasten im Messergebnisfeld

AUF/AB	Wählt eine einzelne Messung aus.	
TEST	Ruft ein Dialogfenster zum Löschen einer einzelnen Messung auf.	
	Ein erneuter Tastendruck löscht die einzelne Messung.	
TAB/ESC	Zurück/Abbruch zum Anlagenstrukturfeld.	
Funktionswahlschalter	Zurück/Abbruch zur Messfunktion.	

Abbildung 6.10: Löschen einer einzelnen Messung

Abbildung 6.11: Anzeige nachdem die Messung gelöscht wurde

6.5 Umbenennen der Anlagenstrukturfelder

6.5.1 Umbenennen der Anlagenstrukturfelder über die PC-Software

Die standardmäßigen Anlagenstrukturfelder im Prüfgerät sind »OBJEKT«, »BLOCK«, »SICHERUNG« und »MESSPUNKT«.

In der Protokoll-Software BENNING PC-Win IT 130 können die standardmäßigen Anlagenstrukturfelder benutzerdefiniert umbenannt und an die zu prüfende Anlage angepasst werden. Einmal erstellte Anlagenstrukturen können in der Protokoll-Software BENNING PC-Win IT 130 gespeichert und auf das Prüfgerät BENNING IT 130 übertragen werden. In dem Hilfe-Menü der Protokoll-Software BENNING PC-Win IT 130 finden Sie weitere Informationen, wie Sie benutzerdefinierte Anlagestrukturen auf das Prüfgerät übertragen.

DATEN ABFRAGEN
[OBJ]WOHNUNG [BLOIVERTEILER EG > [FUS]KUECHE
No.: 72

Abbildung 6.12: Beispiel einer benutzerdefinierten Anlagenstruktur

6.5.2 Umbenennen der Anlagenstrukturfelder über Barcodescanner

Die standardmäßigen Anlagenstrukturfelder im Prüfgerät sind »OBJEKT«, »BLOCK«, »SICHERUNG« und »MESSPUNKT«.

Wenn sich das Prüfgerät im Menü **Ergebnisse speichern** befindet, kann die Ident-Nr. oder die Bezeichnung der Messstelle mit Hilfe eines Barcodescanners eingelesen werden.

Abbildung 6.13: Anschluss des optionalen Barcodescanners (009371)

Umbenennen des Speicherplatzes

- Schließen Sie den optionalen Barcodescanner an das Prüfgerät an.
- □ Führen Sie die Messung durch, betätigen Sie Taste **MEM** und wählen Sie im Menü **Ergebnisse speichern** den Speicherplatz, der umbenannt werden soll.
- Scannen Sie die Ident-Nr. oder die Bezeichnung der Messstelle von dem Barcodeetikett, um das Anlagestrukturfeld umzubenennen. Das Prüfgerät bestätigt den Empfang durch zwei kurze Signaltöne und zeigt die Ident-Nr. bzw. die Bezeichnung der Messstelle an.

Anmerkung:

□ Verwenden Sie ausschließlich nur Barcodescanner, die von BENNING freigegeben wurden.

6.6 USB- und RS 232-Schnittstelle

Das Prüfgerät besitzt die beiden Kommunikationsschnittstellen USB und RS 232. Der Übertragungsmodus wird, je nach verwendeter Schnittstelle, automatisch durch das Prüfgerät ausgewählt. Die USB-Schnittstelle hat dabei Priorität.

Die gespeicherten Messergebnisse können mit Hilfe der Protokoll-Software BENNING PC-Win IT 130 auf einen PC übertragen werden. Die PC-Software erkennt das Prüfgerät automatisch und ermöglicht so eine Datenübertragung zwischen dem Prüfgerät und dem PC.

PS/2 - RS 232 Kabel Erforderliche Verbindung: 1 zu 2, 4 zu 3, 3 zu 5

Einrichten einer USB- oder RS 232-Verbindung:

- RS 232-Schnittstelle: Schließen Sie das serielle PS/2 RS 232-Schnittstellenkabel an einen COM-Port des PC's und an den PS/2-Stecker des Prüfgerätes.
- USB-Schnittstelle: Schließen Sie das USB-Kabel an einen USB-Port des PC's und an den USB-Anschluss des Pr
 üfger
 ätes.
- Schalten Sie den PC und das Prüfgerät ein.
- Starten Sie das Programm BENNING PC-Win IT 130.
- Der PC und Prüfgerät erkennen sich jeweils automatisch.
- Das Prüfgerät ist für die Kommunikation mit dem PC vorbereitet.

Die Protokoll-Software BENNING PC-Win IT 130 ist lauffähig unter Windows XP, Windows Vista, Windows 7 und Windows 8.

Anmerkung:

Der USB-Treiber ist vor der Nutzung der USB-Schnittstelle auf dem PC zu installieren. Auf der Installations-CD finden Sie Anweisungen zur Installation des USB-Treibers.

7 Wartung

Nicht autorisiertem Personal ist es nicht gestattet, das Prüfgerät zu öffnen. Außer den Batterien/ Akkus und den Sicherungen gibt es im Prüfgerät keine austauschbaren Komponenten.

7.1 Ersetzen der Sicherungen

Hinter der rückseitigen Abdeckung des Prüfgerätes befinden sich drei Sicherungen:

🗆 F1

M 0,315 A/250 V, 20×5 mm (757211)

Diese Sicherung dient dem Schutz der internen Schaltkreise der Niederohmmessung/ Durchgangsprüfung, falls die Prüfspitzen während der Messung versehentlich an die Netzspannung angeschlossen werden.

□ F2, F3

F 4 A/500 V, 32×6,3 mm, Abschaltvermögen: 50 kA (757212) Allgemeine Sicherungen von Prüfanschlüssen L/L1 und N/L2.

Die Position der Sicherungen kann im Kapitel 3.3 Rückseite eingesehen werden.

Warnungen:

- Trennen Sie alle Pr
 üfleitungen und schalten Sie das Pr
 üfger
 ät aus, bevor Sie das Batterie-/Sicherungsfach öffnen, da im Ger
 ät gef
 ährliche Spannungen anliegen!
- Ersetzen Sie die defekte Sicherung nur durch Originalsicherungen, da das Pr
 üfger
 ät oder das Zubeh
 ör sonst besch
 ädigt werden k
 önnen und/oder die Sicherheit des Bedieners eingeschr
 änkt ist!

7.2 Reinigung

Für das Gehäuse ist keine spezielle Wartung erforderlich. Zur Reinigung der Oberfläche des Prüfgerätes oder der Zubehörteile ist ein weiches, leicht angefeuchtetes Tuch mit etwas Seifenwasser oder Alkohol zu verwenden. Anschließend müssen das Prüfgerät oder die Zubehörteile vollständig trocknen, bevor es wieder verwendet werden kann.

Warnungen:

- Verwenden Sie keine Flüssigkeiten auf Benzin- oder Kohlenwasserstoffbasis!
- Schütten Sie keine Reinigungsflüssigkeiten über das Prüfgerät!

7.3 Periodische Kalibrierung

Es ist wichtig, das Prüfgerät regelmäßig zu kalibrieren, damit die in dieser Bedienungsanleitung aufgeführten technischen Daten garantiert werden. Es wird eine jährliche Kalibrierung empfohlen. Die Kalibrierung darf nur durch einen autorisierten Techniker durchgeführt werden. Bitte wenden Sie sich für weitere Informationen an Ihren Händler oder an den BENNING Service.

7.4 Service

Für anfallende Reparatur- und Servicearbeiten wenden Sie sich bitte an Ihren Händler oder den BENNING Service.

BENNING Elektrotechnik und Elektronik GmbH & Co KG Robert-Bosch-Str. 20 D - 46397 Bocholt

BENNING Helpdesk Telefon-Nr.: +49 (0) 2871 - 93 - 555

www.benning.de • hotline@benning.de

8 Technische Daten

8.1 Isolationswiderstand

Isolationswiderstand (Nennspannungen 50 V_{DC}, 100 V_{DC} und 250 V_{DC}) Messbereich gemäß EN 61557-2: 0,15 M Ω ÷ 199,9 M Ω

Messbereich (MΩ)	Auflösung (MΩ)	Genauigkeit
0,00 ÷ 19,99	0,01	\pm (5 % des Messwertes + 3 Digit)
20,0 ÷ 99,9	0.1	±(10 % des Messwertes)
100,0 ÷ 199,9	0,1	±(20 % des Messwertes)

Isolationswiderstand (Nennspannungen 500 V_{DC} und 1000 V_{DC})

Messbereich gemäß EN 61557-2: 0,15 M Ω ÷ 999 M Ω

Messbereich (MΩ)	Auflösung (MΩ)	Genauigkeit
0,00 ÷ 19,99	0,01	\pm (5 % des Messwertes + 3 Digit)
20,0 ÷ 199,9	0,1	\pm (5 % des Messwertes)
200 ÷ 999	1	±(10 % des Messwertes)

Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 1200	1	\pm (3 % des Messwertes + 3 Digit)

Die angegebene Genauigkeit gilt bei Verwendung der 3-Leiter-Prüfleitung und bis 100 M Ω bei Verwendung der Commander-Prüfspitze.

Die angegebene Genauigkeit gilt bis 100 M Ω bei einer relativen Luftfeuchtigkeit > 85 %. Falls das Prüfgerät feucht wird, kann das Ergebnis beeinträchtigt werden. In diesem Fall wird empfohlen, das Prüfgerät und sein Zubehör mindestens 24 Stunden lang zu trocknen. Der maximale Fehler unter Betriebsbedingungen entspricht dem maximalen Fehler unter Referenzbedingung ± 5 % des Messwertes.

8.2 Niederohmwiderstand/Durchgangsprüfung

8.2.1 Niederohmwiderstand R LOW

Messbereich gemäß EN 61557-4: 0,16 Ω \div 1999 Ω

Messbereich R (Ω)	Auflösung (Ω)	Genauigkeit
0,00 ÷ 19,99	0,01	\pm (3 % des Messwertes + 3 Digit)
20,0 ÷ 199,9	0,1	$\pm (5\% \text{ deg Magawartag})$
200 ÷ 1999	1	

Messbereich R+, R- (Ω)	Auflösung (Ω)	Genauigkeit
0,0 ÷ 199,9	0,1	$\pm (5\%)$ doe Measurertee + 5 Digit
200 ÷ 1999	1	\pm (5 % des Messwertes + 5 Digit)

8.2.2 Durchgangsprüfung

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,0 ÷ 19,9	0,1	+(E % dee Messylartee + 2 Digit)
20 ÷ 1999	1	\pm (5 % des Messwertes + 3 Digit)

Leerlaufspannung	6,5 V DC ÷ 9 V DC
Kurzschlussstrom	max. 8,5 mA
Kompensation der Prüfleitung	bis 5 Ω

8.3 Fehlerstromschutzeinrichtung FI/RCD

8.3.1 Allgemeine Daten

Nenn-Auslösedifferenzstrom	10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA
Genauigkeit	$\dots -0 / +0, 1 \cdot I\Delta; I\Delta = I\Delta N, 2 \times I\Delta N, 5 \times I\Delta N$
-	$-0,1\cdot I\Delta / +0; I\Delta = 0,5 \times I\Delta N$
	AS/NZS: ± 5 %
Form des Prüfstromes	sinusförmig (Typ AC), pulsierend (Typ A, Typ F),
	glatter Gleichstrom (Typ B, Typ B+)
DC-Offset für pulsierender Prüfstrom	6 mA (typisch)
FI/RCD-Typ	unverzögert, verzögert (S)
Anfangspolarität des Prüfstromes	. 0º oder 180º
Spannungsbereich	93 V ÷ 134 V (45 Hz ÷ 65 Hz)
	185 V ÷ 266 V (45 Hz ÷ 65 Hz)
Stromauswahl für Prüfung der Fehlerstrom-Schutzeinrichtung (Effektivwert berechnet zu 20 ms) nach IEC 61009:

		$I_{\Delta N} \times 1$	/2		$I_{\Delta N} \times 1$			$I_{\Delta N} \times 2$			$I_{\Delta N} \times \xi$	5	F	-I/RCI	$D I_{\Delta}$
$I_{\Delta N}$ (mA)	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+
10	5	3,5	5	10	20	20	20	40	40	50	100	100	✓	\checkmark	✓
30	15	10,5	15	30	42	60	60	84	120	150	212	300	✓	✓	✓
100	50	35	50	100	141	200	200	282	400	500	707	1000	✓	✓	\checkmark
300	150	105	150	300	424	600	600	848	-	1500	-	-	✓	✓	\checkmark
500	250	175	250	500	707	1000	1000	1410	-	2500	-	-	✓	✓	✓
1000	500	350	500	1000	1410	-	2000	-	-	-	-	-	~	\checkmark	-

"¯" ·····	nicht zutreffend
Тур АС	Prüfstrom sinusförmig
Typ A, Typ F	Prüfstrom pulsierend
Тур В, Тур В+	Prüfstrom glatter Gleichstrom

8.3.2 Berührungsspannung (Uc)

Messbereich gemäß EN 61557-6: 20,0 V \div 31,0 V für Grenzwert 25 V Messbereich gemäß EN 61557-6: 20,0 V \div 62,0 V für Grenzwert 50 V

Messbereich (V)	Auflösung (V)	Genauigkeit
0,0 ÷ 19,9	0,1	(-0 % / +15 %) des Messwertes ± 10 Digit
20,0 ÷ 99,9	0,1	(-0 % / +15 %) des Messwertes

Die Genauigkeitsangaben sind gültig bei stabiler Netzspannung und Schutzleiterverbindungen ohne Störspannungen.

Prüfstrom...... max. $0.5 \times I_{\Delta N}$ Grenzwert Berührungsspannung............. 25 V, 50 V Die Genauigkeitsangaben gelten für den gesamten Messbereich.

8.3.3 Auslösezeit (RCD t)

Der komplette Messbereich entspricht den Anforderungen der Norm EN 61557-6.

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0,0 ÷ 40,0	0,1	±1 ms
0,0 ÷ max. Zeit *	0,1	±3 ms

* Die maximale Messdauer ist abhängig von der eingestellten FI/RCD-Prüfnorm (siehe Kapitel *4.4.5 FI/RCD-Prüfung*) - Spezifikation ist gültig maximale Zeiten >40 ms.

 $\begin{array}{l} \mbox{Prüfstrom}.....1_{2}\times I_{\Delta N}, \ I_{\Delta N}, \ 2\times I_{\Delta N}, \ 5\times I_{\Delta N} \\ 5\times I_{\Delta N} \ \ ist \ nicht \ verfügbar \ für \ I_{\Delta N} = 1000 \ \ mA \ (FI/RCD \ Typ \ AC) \ oder \\ I_{\Delta N} \geq 300 \ \ mA \ (FI/RCD \ Typ \ A, \ Typ \ F). \\ 2\times I_{\Delta N} \ \ ist \ nicht \ verfügbar \ für \ I_{\Delta N} = 1000 \ \ mA \ (FI/RCD \ Typ \ A, \ Typ \ F). \\ Die \ Genauigkeitsangaben \ gelten \ für \ den \ gesamten \ Messbereich. \end{array}$

8.3.4 Auslösestrom (RCD I)

Auslösestrom

Norm **EN 60364-4-41** (VDE 0100-410), (Einstellung unter SETTINGS \rightarrow RCD/FI-Prüfung): Der komplette Messbereich entspricht den Anforderungen der Norm EN 61557-6.

Messbereich I _A	Auflösung I _∆	Genauigkeit
$0,1 \times I_{\Delta N} \div 1,1 \times I_{\Delta N}$ (Typ AC)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,1×I _{∆N} ÷ 1,5×I _{∆N} (Typ A, I _{∆N} ≥30 mA)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,1×I _{∆N} ÷ 2,2×I _{∆N} (Typ A, I _{∆N} ≥30 mA)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,1×I _{∆N} ÷ 2,2×I _{∆N} (Typ B)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$

Norm **EN 61008/EN 61009** (VDE 0664-10/VDE 0664-20), (Einstellung unter SETTINGS \rightarrow RCD/FI-Prüfung):

Der komplette Messbereich entspricht den Anforderungen der Norm EN 61557-6.

Messbereich I _A	Auflösung I _∆	Genauigkeit
$0,2 \times I_{\Delta N} \div 1,1 \times I_{\Delta N}$ (Typ AC)	$0,05 \times I_{\Delta N}$	$\pm 0,1 \times I_{\Delta N}$
0,2×I _{∆N} ÷ 1,5×I _{∆N} (Typ A, I _{∆N} ≥30 mA)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,2×I _{∆N} ÷ 2,2×I _{∆N} (Typ A, I _{∆N} ≥30 mA)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$
0,2×I _{∆N} ÷ 2,2×I _{∆N} (Typ B)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$

Auslösezeit

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 ÷ 300	1	±3 ms

Berührungsspannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0,0 ÷ 19,9	0,1	(-0 % / +15 %) des Messwertes \pm 10 Digit
20,0 ÷ 99,9	0,1	(-0 % / +15 %) des Messwertes

Die Genauigkeitsangaben sind gültig bei stabiler Netzspannung und Schutzleiterverbindungen ohne Störspannungen.

Die Auslösestrommessung ist nicht verfügbar für $I_{\Delta N}$ =1000 mA (FI/RCD-Typ B, Typ B+). Die Genauigkeitsangaben gelten für den gesamten Messbereich.

Auslösestromgrenzen

FI/RCD-Typ	Auslösestrom			
	Untere Grenze	Obere Grenze		
		I _{∆N} < 30 mA	I _{∆N} ≥ 30 mA	
AC (Sinus)	$0.5 imes I_{\Delta N}$	Ι _{ΔN}		
A, F (gepulst)	$0.35 imes I_{\Delta N}$	$2 \times I_{\Delta N}$	$1.4 imes I_{\Delta N}$	
B, B+ (DC)	$0.5 imes I_{\Delta N}$	2 ×	$I_{\Delta N}$	

Hinweis:

Bei Auswahl der Norm **EN 60364-4-41** (SETTINGS-Einstellung \rightarrow RCD/FI-Prüfung) wird ein Auslösestrom kleiner der unteren Grenze ohne eine Bewertung (\times / \checkmark) angezeigt.

8.4 Schleifenimpedanz und unbeeinflusster Fehlerstrom

8.4.1 Funktion Zs (Systeme ohne FI/RCD)

Schleifenimpedanz

Messbereich gemäß EN 61557-3: 0,25 Ω ÷ 9,99 k Ω

5	, , ,	
Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 ÷ 9,99	0,01	+ (E % dea Maaawartaa + E Digit)
10,0 ÷ 99,9	0,1	\pm (5 % des Messwertes + 5 Digit)
100 ÷ 999	1	±10 % dea Masawartaa
1,00 k ÷ 9,99 k	10	

Unbeeinflusster Fehlerstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit			
0,00 ÷ 9,99	0,01				
10,0 ÷ 99,9	0,1	Reachtan Sie die Canaviakait			
100 ÷ 999	1	der Schleifenimpedanzmessung			
1,00 k ÷ 9,99 k	10				
10,0 k ÷ 23,0 k	100				

Die Genauigkeitsangabe ist gültig, wenn die Netzspannung während der Messung stabil ist.

Prüfstrom (bei 230 V)	6,5 A (10 ms)
Nennspannungsbereich	93 V ÷ 134 V (45 Hz ÷ 65 Hz)
	185 V ÷ 266 V (45 Hz ÷ 65 Hz)

8.4.2 Funktion Zs rcd (Systeme mit FI/RCD)

Schleifenimpedanz

Messbereich gemäß EN 61557-3: 0.46 Ω ÷ 9.99 k Ω

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 ÷ 9,99	0,01	$\pm (5.\%)$ den Mannuertan ± 10 Digit)
10,0 ÷ 99,9	0,1	\pm (5 % des Messwertes + 10 Digit)
100 ÷ 999	1	+10 % dea Massworten
1,00 k ÷ 9,99 k	10	±10 % des messwertes

Die Genauigkeit kann durch Störspannungen auf der Netzspannung beeinträchtigt werden.

Unbeeinflusster Fehlerstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit
0,00 ÷ 9,99	0,01	
10,0 ÷ 99,9	0,1	Reachtan Sie die Conquiskoit
100 ÷ 999	1	der Schleifenimpedanzmessung
1,00 k ÷ 9,99 k	10	
10,0 k ÷ 23,0 k	100	

Keine Auslösung der Fehlerstrom-Schutzeinrichtung FI/RCD.

Leitungsimpedanz und unbeeinflusster Kurzschlussstrom/ 8.5 Spannungsfall

Leitungsimpedanz

Messbereich gemäß EN 61557-3: 0.25 Ω ÷ 9.99 k Ω

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 ÷ 9,99	0,01	+ (5.%) doe Measurement of the Digit
10,0 ÷ 99,9	0,1	\pm (5 % des Messwertes + 5 Digit)
100 ÷ 999	1	+10 % dea Masawartaa
1,00 k ÷ 9,99 k	10	

Unbeeinflusster Kurzschlussstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit
0,00 ÷ 0,99	0,01	
1,0 ÷ 99,9	0,1	Baaabtan Sia dia Canaviakait dar
100 ÷ 999	1	Leitungsimpedanzmessung
1,00 k ÷ 99,99 k	10	Leitungsimpedanzmessung
100 k ÷ 199 k	1000	

Prüfstrom (bei 230 V)	6,5 A (10 ms)
Nennspannungsbereich	93 V ÷ 134 V (45 Hz ÷ 65 Hz)
	185 V ÷ 266 V (45 Hz ÷ 65 Hz)
	321 V ÷ 485 V (45 Hz ÷ 65 Hz)

Spannungsfall (berechneter Wert)

Messbereich (%)	Auflösung (%)	Genauigkeit
0,0 ÷ 99,9	0,1	Beachten Sie die Genauigkeit der Leitungsimpedanzmessung*

 $\label{eq:2_REF} \begin{array}{l} Z_{\text{REF}} \text{-Messbereich} & \ldots \\ \text{* Siehe Kapitel $5.6.2 Spannungsfall$ für die Berechnung des Spannungsfalles} \end{array}$

8.6 Erdungswiderstand

Messbereich gemäß Eine 1557-5: 2,00 $\Omega \div 1999 \Omega$		
Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 ÷ 19,99	0,01	
20,0 ÷ 199,9	0,1	\pm (5 % des Messwertes + 5 Digit)
200 ÷ 9999	1	

Messbereich gemäß EN61557-5: 2,00 Ω ÷ 1999 Ω

Automatische Messung des Hilfserder- und des Sondenwiderstandes. Automatische Überwachung der Störspannung.

8.7 TRMS Spannung, Frequenz und Phasenfolge

8.7.1 TRMS Spannung (AC/DC)

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 550	1	\pm (2 % des Messwertes + 2 Digit)

Messverfahren..... Echt-Effektivwert (TRMS) Frequenzbereich...... 0 Hz, 14 Hz ÷ 500 Hz

8.7.2 Spannung des Anschlussmonitores

Messbereich (V)	Auflösung (V)	Genauigkeit
10 ÷ 550	1	\pm (2 % des Messwertes + 2 Digit)

8.7.3 Frequenz

Messbereich (Hz)	Auflösung (Hz)	Genauigkeit
0,00 ÷ 9,99	0,01	$\pm (0.2.\%)$ dee Measurertee ± 1.7 iffer)
10,0 ÷ 499,9	0,1	$\pm (0,2\%$ des Messwertes ± 1 Ziller)

Spannungsbereich..... 10 V \div 550 V

8.7.4 Phasenfolge (Drehfeld)

Spannungsbereich	100 V_{AC} ÷ 550 V_{AC}
Frequenzbereich	14 Hz ÷ 500 Hz
Angezeigtes Ergebnis	1.2.3 oder 3.2.1

8.8 TRMS Strom (AC/DC) über Stromzangenadapter

Messeingang C1 des Prüfgerätes:

Maximale Spannung	3 V
Frequenz	0 Hz, 40 Hz ÷ 500 Hz

AC-Stromzangenadapter BENNING CC 1 (044037)

Bereich = 400 A	
Ausgangssignal	1 mV AC pro 1 A AC
Frequenz	50 Hz ÷ 60 Hz

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,00 ÷ 0,99	0,01	indikativ
1,00 ÷ 19,99	0,01	\pm (3 % des Messwertes + 0,5 A)
20,0 ÷ 349,9	0.1	\pm (3 % des Messwertes + 0,5 A)
350,0 ÷ 399,9	0.1	\pm (5 % des Messwertes + 1 A)

AC-Stromzangenadapter BENNING CC 2 (044110)

Bereich = 20 A	
Ausgangssignal	1 mA AC pro 1 A AC
Frequenz	48 Hz ÷ 65 Hz

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,0 m ÷ 99,9 m	0,1 m	indikativ
100 m ÷ 499 m	1 m	indikativ
500 m ÷ 999 m	1 m	\pm (5 % des Messwertes + 0,5 A)
1,00 ÷ 19,99	0,01	$\pm (5\%$ des Messwertes + 0,5 A)

AC/DC-Stromzangenadapter BENNING CC 3 (044038)

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,00 ÷ 1,99	0,01	$\pm(3\%$ des Messwertes + 0,2 A)
2,00 ÷ 19,99	0,01	$\pm(3\%$ des Messwertes + 0,3 A)
20,0 ÷39,9	0,1	$\pm (3\%$ des Messwertes + 0,5 A)

Bereich = 300 A Ausgangssignal...

Ausgangssignal 1 mV AC/DC pro 1 A AC/DC

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,00 ÷ 19,99	0,01	indikativ
20,0 ÷ 39,9	0,1	liiukaliv
40,0 ÷ 199,9	0,1	\pm (4 % des Messwertes + 1 A)
200,0 ÷ 299,9	0,1	\pm (4 % des Messwertes + 2 A)

* Die Genauigkeit ist gültig für das Prüfgerät BENNING IT 130 und den verwendeten BENNING-Stromzangenadaptern.

8.9 Erstfehler-Leckstrom ISFL im IT-Netz

Messbereich (mA)	Auflösung (mA)	Genauigkeit
0,0 ÷ 19,9	0,1	± (5 % des Messwertes + 3 Digit)

8.10 Beleuchtungsstärke

Die Genauigkeitsangaben gelten für den gesamten Messbereich und Verwendung des Beleuchtungsstärkesensors BENNING Luxmeter Typ B (044111).

Messbereich (lux)	Auflösung (lux)	Genauigkeit
0,01 ÷ 19,99	0,01	\pm (5 % des Messwertes + 2 Digit)
20,0 ÷ 199,9	0,1	
200 ÷ 1999	1	\pm (5 % des Messwertes)
2,00 ÷ 19,99 k	10	

Messprinzip	.Siliziumfotodiode mit V(λ)-Filter
Spektralreaktionsfehler	.< 3,8 % gemäß CIE-Kurve
Cosinusfehler	.< 2,5 % bis Einfallwinkel von ± 85°
Gesamtgenauigkeit	entspricht DIN 5032 Klasse B

8.11 Allgemeine Daten

Versorgungsspannung Betrieb Ladebuchse, Eingangsspannung Ladebuchse, Eingangsstrom Akku-Ladestrom Messkategorie	9 V _{DC} (6×1,5 V Batterie oder Akku, Typ AA) typisch 20 h 12 V ± 10 % 400 mA max. 250 mA (intern geregelt) 1000 V CAT II gegen Erde 600 V CAT III gegen Erde 300 V CAT III gegen Erde
Schutzklasse	IP 40
Display	Matrix-Display mit 128 x 64 Bildpunkten und Hintergrundbeleuchtung
Abmessungen (B \times H \times T) Gewicht	23 cm \times 10,3 cm \times 11,5 cm 1,3 kg, ohne Batterien/Akkus
Referenzbedingungen Temperaturbereich Luftfeuchtebereich	+10 °C ÷ +30 °C 40 % rel. Luftfeuchte ÷ 70 % rel. Luftfeuchte
Betriebsbedingungen Temperaturbereich Maximale relative Luftfeuchte	0 °C ÷ +40 °C 95 % rel. Luftfeuchte (0 °C ÷ 40 °C), nicht kondensierend
Lagerbedingungen Temperaturbereich Maximale relative Luftfeuchtigkeit	-10 °C ÷ +70 °C 90 % rel. Luftfeuchte (-10 °C ÷ +40 °C) 80 % rel. Luftfeuchte (40 °C ÷ 60 °C)
Übertragungsgeschwindigkeit RS 232 Schnittstelle USB Schnittstelle	57600 baud 256000 baud
Speichergröße	bis 1800 Messungen

Die Genauigkeitsangaben gelten für das 1. Jahr der Nutzung unter Referenzbedingungen. Falls es in der jeweiligen Messfunktion nicht anders spezifiziert wird, muss für die Nutzung unter Betriebsbedingungen zusätzlich ein maximaler Fehler von + 1 % des Messwertes + 1 Digit berücksichtigt werden.

Anhang A Sicherungstabelle – Unbeeinflusster Kurzschlussstrom

Sicherung, Betriebsklasse gL/gG

- gG: Ganzbereichssicherung für allgemeine Anwendungen, hauptsächlich Kabel- und Leitungsschutz
- gL: frühere VDE-Betriebsklasse, ersetzt durch gG

Nenn-	Trennzeit [s]					
strom	35m	0,1	0,2	0,4	5	
(A)	Minimaler unbeeinflusster Kurzschlussstrom (A)					
2	32,5	22,3	18,7	15,9	9,1	
4	65,6	46,4	38,8	31,9	18,7	
6	102,8	70	56,5	46,4	26,7	
10	165,8	115,3	96,5	80,7	46,4	
16	206,9	150,8	126,1	107,4	66,3	
20	276,8	204,2	170,8	145,5	86,7	
25	361,3	257,5	215,4	180,2	109,3	
35	618,1	453,2	374	308,7	169,5	
50	919,2	640	545	464,2	266,9	
63	1217,2	821,7	663,3	545	319,1	
80	1567,2	1133,1	964,9	836,5	447,9	
100	2075,3	1429	1195,4	1018	585,4	
125	2826,3	2006	1708,3	1454,8	765,1	
160	3538,2	2485,1	2042,1	1678,1	947,9	
200	4555,5	3488,5	2970,8	2529,9	1354,5	
250	6032,4	4399,6	3615,3	2918,2	1590,6	
315	7766,8	6066,6	4985,1	4096,4	2272,9	
400	10577,7	7929,1	6632,9	5450,5	2766,1	
500	13619	10933,5	8825,4	7515,7	3952,7	
630	19619,3	14037,4	11534,9	9310,9	4985,1	
710	19712,3	17766,9	14341,3	11996,9	6423,2	
800	25260,3	20059,8	16192,1	13545,1	7252,1	
1000	34402,1	23555,5	19356,3	16192,1	9146,2	
1250	45555,1	36152,6	29182,1	24411,6	13070,1	

Leitungsschutzschalter, Auslöse-Charakteristik B

Bereich der Sofortauslösung: 3 - 5 x I_N

Nenn-	Trennzeit [s]				
strom	35m	0,1	0,2	0,4	5
(A)	Minimaler unb	eeinflusster Ku	rzschlussstrom	ו (A)	
6	30	30	30	30	30
10	50	50	50	50	50
13	65	65	65	65	65
15	75	75	75	75	75
16	80	80	80	80	80
20	100	100	100	100	100
25	125	125	125	125	125
32	160	160	160	160	160
40	200	200	200	200	200
50	250	250	250	250	250
63	315	315	315	315	315

Leitungsschutzschalter, Auslöse-Charakteristik C Bereich der Sofortauslösung: 5 - 10 x I_N

Nenn-	lenn- Trennzeit [s]				
strom	35m	0,1	0,2	0,4	5
(A)	Minimaler unb	eeinflusster Ku	rzschlussstrom	ו (A)	
0,5	5	5	5	5	2,7
1	10	10	10	10	5,4
1.6	16	16	16	16	8,6
2	20	20	20	20	10,8
4	40	40	40	40	21,6
6	60	60	60	60	32,4
10	100	100	100	100	54
13	130	130	130	130	70,2
15	150	150	150	150	83
16	160	160	160	160	86,4
20	200	200	200	200	108
25	250	250	250	250	135
32	320	320	320	320	172,8
40	400	400	400	400	216
50	500	500	500	500	270
63	630	630	630	630	340,2

Leitungsschutzschalter, Auslöse-Charakteristik K

Bereich der Sofortauslösung: 8 - 14 x I_N

Nenn-	Trennzeit [s]			
strom	35m	0,1	0,2	0,4
(A)	Minimaler unb	eeinflusster Ku	rzschlussstrom	(A)
0,5	7,5	7,5	7,5	7,5
1	15	15	15	15
1.6	24	24	24	24
2	30	30	30	30
4	60	60	60	60
6	90	90	90	90
10	150	150	150	150
13	195	195	195	195
15	225	225	225	225
16	240	240	240	240
20	300	300	300	300
25	375	375	375	375
32	480	480	480	480

Leitungsschutzschalter, Auslöse-Charakteristik D

Bereich der Sofortauslösung: 10 - 20 x I_N

Nenn-	Trennzeit	Trennzeit [s]				
strom	35m	0,1	0,2	0,4	5	
(A)	Minimaler	unbeeinflusst	er Kurzschluss	strom (A)	·	
0,5	10	10	10	10	2,7	
1	20	20	20	20	5,4	
1.6	32	32	32	32	8,6	
2	40	40	40	40	10,8	
4	80	80	80	80	21,6	
6	120	120	120	120	32,4	
10	200	200	200	200	54	
13	260	260	260	260	70,2	
15	300	300	300	300	81	
16	320	320	320	320	86,4	
20	400	400	400	400	108	
25	500	500	500	500	135	
32	640	640	640	640	172,8	

Anhang B Standard und optionales Zubehör pro Messfunktion

In der Tabelle unten sind empfohlene standardmäßige und optionale Zubehörteile aufgeführt, die für die einzelnen Messungen erforderlich sind. Weitere Informationen über das standardmäßige und optionale Zubehör finden Sie im Kapitel 3.5.

Messfunktion	Geeignetes Zubehör (Zubehör mit ArtNr. sind optional)
Isolationswiderstand	Universelle 3-Leiter-Pr üfleitung
	Commander-Prüfspitze (schaltbar mit TEST-Taste)
Niederohmwiderstand	Universelle 3-Leiter-Prüfleitung
Durchgangsprüfung	Commander-Prüfspitze (schaltbar mit TEST-Taste)
	BENNING TA 5 (40 m Messleitung) (044039)
Leitungsimpedanz	Universelle 3-Leiter-Prüfleitung
(Spannungsfall)	Prüfkabel mit Schutzkontaktstecker
Schleifenimpedanz	Commander-Pr üfstecker f ür Schutzkontaktsteckdose
	(schaltbar mit TEST-Taste) (044149)
	Commander-Prüfspitze (schaltbar mit TEST-Taste)
FI/RCD-Prüfung	Universelle 3-Leiter-Pr üfleitung
	Prüfkabel mit Schutzkontaktstecker
	Commander-Pr üfstecker f ür Schutzkontaktsteckdose
	(schaltbar mit TEST-Taste) (044149)
Erdungswiderstand	Universelle 3-Leiter-Pr üfleitung
	Erdungsset bestehend aus zwei Erdspießen, 3 Pr üflei-
	tungen (044113)
Phasenfolge (Drehfeld)	Universelle 3-Leiter-Pr üfleitung
	CEE-Messadapter, 16 A, 5-polig, zur Messung von Span-
	nung und Drehfeld (044148)
Spannung, Frequenz	Universelle 3-Leiter-Pr üfleitung
	Commander-Prüfspitze (schaltbar mit TEST-Taste)
	Prüfkabel mit Schutzkontaktstecker
	Commander-Prüfstecker für Schutzkontaktsteckdose
	(schaltbar mit TEST-Taste) (044149)
Strom	AC-Stromzangenadapter BENNING CC 1
	zur Strommessung bis 400 A AC (044037)
	AC-Stromzangenadapter BENNING CC 2
	zur Strommessung bis 20 A AC (044110)
	AC/DC-Stromzangenadapter BENNING CC 3
	zur Strommessung bis 300 A AC/DC (044038)
Beleuchtungsstärke	 Beleuchtungsstärkesensor BENNING Luxmeter Typ B (044111)
Erstfehler-Leckstrom ISFL im	Diverselle 3-Leiter-Prüfleitung
IT-Netz	Prüfkabel mit Schutzkontaktstecker
	Commander-Pr üfstecker f ür Schutzkontaktsteckdose
	(schaltbar mit TEST-Taste) (044149)
	© Commander-Prüfspitze (schaltbar mit TEST-Taste)

Anhang C Commander-Prüfspitze, Commander-Prüfstecker

C.1 **A** Sicherheitswarnungen

Messkategorien der Commander

Commander-Prüfspitze (schaltbar mit TEST-Taste)

ohne Aufsteckkappe, 18-mm-Spitze:
mit Aufsteckkappe, 4-mm-Spitze:

CAT II 1000 V gegen Erde CAT II 1000 V/CAT III 600 V/CAT IV 300 V gegen Erde

Optionales Zubehör:

```
Commander-Prüfstecker für Schutzkontakt-Steckdose (schaltbar mit TEST-Taste)Art. Nr.: 044149CAT II 300 V gegen Erde
```

- Die Messkategorien der Commander können geringer sein als die Schutzkategorie des Pr
 üfger
 ätes.
- Wenn am Schutzleiteranschluss die Phasenspannung erkannt wird, sofort alle Messungen stoppen und dafür sorgen, dass der Fehler abgestellt wird.
- Wenn Sie die Batterien/Akkus tauschen oder die Batteriefachabdeckung öffnen, trennen Sie den Commander vom Prüfgerät und der Installation.
- □ Für anfallende Reparatur- und Servicearbeiten wenden Sie sich bitte an Ihren Händler oder den BENNING Service.

C.2 Batterien

Die Commander können mit zwei Alkali-Batterien oder zwei wiederaufladbaren NiMH-Batterien (Akkus) der Größe AAA betrieben werden. Die übliche Betriebszeit beträgt ca. 40 Stunden und gilt für eine Kapazität von mindestens 850 mAh.

Hinweise:

- Wenn die Commander über einen längeren Zeitraum nicht verwendet werden, sind die Batterien/Akkus aus dem Batteriefach zu entfernen.
- Es dürfen nur Alkali-Batterien bzw. wiederaufladbare NiMH-Batterien der Größe AAA verwendet werden. Bei der Verwendung von wiederaufladbaren Akkus sollten eine Mindestkapazität von 850 mAh eingehalten werden.
- Es ist sicherzustellen, dass die Batterien/Akkus korrekt eingesetzt werden, da der Commander sonst nicht betrieben werden kann und sich die Batterien/Akkus entladen.

C.3 Beschreibung der Commander

Abbildung C.3: Rückseite der Commander-Prüfspitze

Legende:

1	TEST	Start der Messung.
		PE-Berührungselektrode für Schutzleiteranschluss.
2	LED	Linke Status RGB-LED.
3	LED	Rechte Status RGB-LED.
4	LED's	LED's der Messstellenbeleuchtung.
5	Funktionswahltasten	Auswahl der Messfunktion (nur AUTO-Schaltstellung).
6	MEM	Speichern/Aufrufen von Messergebnissen.
7	LCD-Beleuchtung	Ein-/Ausschalten der LCD-Beleuchtung am Prüfgerät.
8	Messstellenbeleuchtung	Ein-/Ausschalten der Messstellenbeleuchtung.
9	Batterien/Akkus	Größe AAA, Alkali-Batterien oder NiMH Akkus.
10	Batteriefachabdeckung	Batteriefachabdeckung.
11	Aufsteckkappe	Abnehmbare Aufsteckkappe CAT IV 300 V.

C.4 LED-Anzeigen der Commander

Beide LED's gelb	Warnung! Phasenspannung am PE-Anschluss des Com- manders! Anzeige erfolgt nur, wenn silberne TEST-Taste des Commanders für > 1 Sek. berührt wird!
Rechte LED rot	Messergebnis außerhalb der voreingestellten Grenzwerte.
Rechte LED grün	Messergebnis innerhalb der voreingestellten Grenzwerte.
Linke LED blinkt blau	Commander überwacht die Eingangsspannung.
Linke LED orange	Spannung zwischen Prüfanschlüssen ist höher als 50 V.
Beide LED's blinken rot	Batteriespannung des Commanders ist gering.
Beide LED's rot und	Batteriespannung zu gering, um den Commander betrei-
Commander schaltet ab	ben zu können.

Prüfung des Schutzleiteranschlusses

- Wählen Sie mit dem Funktionswahlschalter die Schaltstellung ZI (L-N/L), Zs (L-PE) oder FI/RCD.
- Schließen Sie den optionalen Commander-Pr
 üfstecker (044149) an das Pr
 üfobjekt (siehe Abbildung C.4).
- Berühren Sie die silberne Berührungselektrode der TEST-Taste am Commander für mindestens eine Sekunde.
- Wenn am PE-Anschluss des Commanders die Phasenspannung erkannt wird, leuchten die LED's des Commanders gelb auf. Zusätzlich erscheint die Warnmeldung

im LC-Display des Prüfgerätes und der Summer ertönt. Weitere Messungen müssen sofort gestoppt werden.

Abbildung C.4: Vertauschte L- und PE-Leiter, Phasenspannung am PE-Anschluss wird durch Berührung der TEST-Taste am optionalen Commander-Prüfstecker (044149) erkannt.